The effect of viscosity on the stability of planar vortices with fine structure

被引:3
|
作者
Hall, IM [1 ]
Bassom, AP [1 ]
Gilbert, AD [1 ]
机构
[1] Univ Exeter, Dept Math Sci, Exeter EX4 4QE, Devon, England
关键词
D O I
10.1093/qjmam/56.4.649
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We examine the viscous response of sharp-edged vortices surrounded by fine structure. Such compact vortices admit normal mode solutions, and when weak vorticity is superimposed around the edge of the vortex a quasi-mode appears. A critical layer is formed at the location at which the angular velocity of the fluid matches the frequency of the normal mode. Fine-scale vorticity within this layer, combined with the presence of viscosity, can affect the stability of the quasi-mode in a number of ways. Here we discuss briefly one situation for which viscosity can have a destabilizing effect.
引用
收藏
页码:649 / 657
页数:9
相关论文
共 50 条
  • [1] The effect of fine structure on the stability of planar vortices
    Hall, IM
    Bassom, AP
    Gilbert, AD
    EUROPEAN JOURNAL OF MECHANICS B-FLUIDS, 2003, 22 (02) : 179 - 198
  • [2] STABILITY AND STRUCTURE OF STRETCHED VORTICES
    ROBINSON, AC
    SAFFMAN, PG
    STUDIES IN APPLIED MATHEMATICS, 1984, 70 (02) : 163 - 181
  • [3] Effect of Streamwise Travelling Waves on Coherent Vortices and Fine Structure of Wall Turbulence
    Umair, M.
    Tardu, S.
    PROGRESS IN TURBULENCE X, ITI CONFERENCE ON TURBULENCE 2023, 2024, 404 : 243 - 248
  • [4] Fine structure of “white” optical vortices in crystals
    A. V. Volyar
    Yu. A. Egorov
    A. F. Rubass
    T. A. Fadeeva
    Technical Physics Letters, 2004, 30 : 701 - 704
  • [5] Fine structure of "white" optical vortices in crystals
    Volyar, AV
    Egorov, YA
    Rubass, AF
    Fadeeva, TA
    TECHNICAL PHYSICS LETTERS, 2004, 30 (08) : 701 - 704
  • [6] ARNOLD'S VARIATIONAL PRINCIPLE AND ITS APPLICATION TO THE STABILITY OF PLANAR VORTICES
    Gallay, Thierry
    Sverak, Vladimir
    ANALYSIS & PDE, 2024, 17 (02): : 681 - 722
  • [7] Stability of a pair of planar counter-rotating vortices in a rectangular box
    Murakami, Y
    Fukuta, H
    FLUID DYNAMICS RESEARCH, 2002, 31 (01) : 1 - 12
  • [8] Effect of viscosity in the dynamics of two point vortices: Exact results
    Agullo, O
    Verga, A
    PHYSICAL REVIEW E, 2001, 63 (05): : 563041 - 563041
  • [9] Planar ringlike vortices
    Bazeia, D.
    Marques, M. A.
    Melnikov, D.
    PHYSICS LETTERS B, 2018, 785 : 454 - 461
  • [10] Fine structure of optical vortices in a crystal: A monochromatic singular beam
    A. V. Volyar
    Yu. A. Egorov
    A. F. Rybas’
    T. A. Fadeeva
    Technical Physics, 2004, 49 : 1627 - 1630