Time Synchronization and Data Fusion for RGB-Depth Cameras and Inertial Sensors in AAL Applications

被引:0
|
作者
Cippitelli, Enea [1 ]
Gasparrini, Samuele [1 ]
Gambi, Ennio [1 ]
Spinsante, Susanna [1 ]
Wahslen, Jonas [2 ]
Orhan, Ibrahim [2 ]
Lindh, Thomas [2 ]
机构
[1] Univ Politecn Marche, Dipartimento Ingn Informaz, I-60131 Ancona, Italy
[2] Royal Inst Technol, KTH, Sch Technol & Hlth, SE-10044 Stockholm, Sweden
关键词
depth camera; inertial sensor; data fusion; synchronization; timed up and go; GO TEST; KINECT; SYSTEM; FALLS;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Ambient Assisted Living applications often need to integrate data from multiple sensors, to provide consistent information on the observed phenomena. Data fusion based on samples from several sensors requires accurate time synchronization with sufficient resolution, depending on the sensor sampling frequency. This work presents a technical platform for the efficient and accurate synchronization of the data captured from RGB-Depth cameras and wearable inertial sensors, that can be integrated in AAL solutions. A case study of sensor data fusion for Timed Up and Go test is also presented and discussed.
引用
收藏
页码:265 / 270
页数:6
相关论文
共 50 条
  • [1] RGB-Depth Fusion GAN for Indoor Depth Completion
    Wang, Haowen
    Wang, Mingyuan
    Che, Zhengping
    Xu, Zhiyuan
    Qiao, Xiuquan
    Qi, Mengshi
    Feng, Feifei
    Tang, Jian
    [J]. 2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 6199 - 6208
  • [2] Fusion of Millimeter wave Radar and RGB-Depth sensors for assisted navigation of the visually impaired
    Long, Ningbo
    Wang, Kaiwei
    Cheng, Ruiqi
    Yang, Kailun
    Bai, Jian
    [J]. MILLIMETRE WAVE AND TERAHERTZ SENSORS AND TECHNOLOGY XI, 2018, 10800
  • [3] Radar and RGB-Depth Sensors for Fall Detection: A Review
    Cippitelli, Enea
    Fioranelli, Francesco
    Gambi, Ennio
    Spinsante, Susanna
    [J]. IEEE SENSORS JOURNAL, 2017, 17 (12) : 3585 - 3604
  • [4] Hierarchical Activity Recognition Using Smart Watches and RGB-Depth Cameras
    Li, Zhen
    Wei, Zhiqiang
    Huang, Lei
    Zhang, Shugang
    Nie, Jie
    [J]. SENSORS, 2016, 16 (10)
  • [5] Automatic foot scanning and measurement based on multiple RGB-depth cameras
    Wu, Ge
    Li, Duan
    Hu, Pengpeng
    Zhong, Yueqi
    Pan, Ning
    [J]. TEXTILE RESEARCH JOURNAL, 2018, 88 (02) : 167 - 181
  • [6] Robustifying semantic cognition of traversability across wearable RGB-depth cameras
    Yang, Kailun
    Bergasa, Luis M.
    Romera, Eduardo
    Wang, Kaiwei
    [J]. APPLIED OPTICS, 2019, 58 (12) : 3141 - 3155
  • [7] RDFC-GAN: RGB-Depth Fusion CycleGAN for Indoor Depth Completion
    Wang, Haowen
    Che, Zhengping
    Yang, Yufan
    Wang, Mingyuan
    Xu, Zhiyuan
    Qiao, Xiuquan
    Qi, Mengshi
    Feng, Feifei
    Tang, Jian
    [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2024, 46 (11) : 7088 - 7101
  • [8] A study on improving the calibration of body scanner built on multiple RGB-Depth cameras
    Wu, Ge
    Li, Duan
    Zhong, Yueqi
    Hu, PengPeng
    [J]. INTERNATIONAL JOURNAL OF CLOTHING SCIENCE AND TECHNOLOGY, 2017, 29 (03) : 314 - 329
  • [9] Multiple human tracking in RGB-depth data: a survey
    Camplani, Massimo
    Paiement, Adeline
    Mirmehdi, Majid
    Damen, Dima
    Hannuna, Sion
    Burghardt, Tilo
    Tao, Lili
    [J]. IET COMPUTER VISION, 2017, 11 (04) : 265 - 285
  • [10] Automatic Hand Detection in RGB-Depth Data Sequences
    Konovalov, Vitaliy
    Clapes, Albert
    Escalera, Sergio
    [J]. ARTIFICIAL INTELLIGENCE RESEARCH AND DEVELOPMENT: PROCEEDINGS OF THE 16TH INTERNATIONAL CONFERENCE OF THE CATALAN ASSOCIATION FOR ARTIFICIAL INTELLIGENCE, 2013, 256 : 91 - 100