A CFD study of coupled aerodynamic-hydrodynamic loads on a semisubmersible floating offshore wind turbine

被引:64
|
作者
Thanh Toan Tran [1 ]
Kim, Dong-Hyun [1 ]
机构
[1] Gyeongsang Natl Univ, Grad Sch Mech & Aerosp Engn, Res Ctr Offshore Wind Turbine Technol ReCOWT, 900 Gajwa Dong, Jinju 660701, South Korea
关键词
computational fluid dynamics (CFD); FAST code; fluid-structure interaction (FSI); fully coupled aerodynamic-hydrodynamics; OC4; DeepCwind; overset grid; PLATFORM; INTERFERENCE; DYNAMICS;
D O I
10.1002/we.2145
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The prediction of dynamic characteristics for a floating offshore wind turbine (FOWT) is challenging because of the complex load coupling of aerodynamics, hydrodynamics, and structural dynamics. These loads should be accurately calculated to yield reliable analysis results in the design phase of a FOWT. In this study, a high-fidelity fluid-structure interaction simulation that simultaneously considers the influence of aero-hydrodynamic coupling due to the dynamic motion of a FOWT has been conducted using computational fluid dynamics based on an overset grid technique. The DeepCwind semisubmersible floating platform with the NREL 5-MW baseline wind turbine model is considered for objective numerical verification with the NREL FAST code. A state-of-the-art computational model based on the coupled computational fluid dynamics and dynamic structure analysis is constructed and analyzed to solve multiphase flow, 6 degrees of freedom motions of OC4 semisubmersible FOWT. A quasi-static mooring solver is also applied to resolve the constraint motion of floater because of a 3-line mooring system. The influence of tower shadow on the unsteady aerodynamic performance and loads is also demonstrated. Finally, complex unsteady flow fields considering blade and tower interference effects among blade-tip vortices, shedding vortices, and turbulent wakes are numerically visualized and investigated in detail.
引用
收藏
页码:70 / 85
页数:16
相关论文
共 50 条
  • [1] Coupled Aerodynamic and Hydrodynamic Analysis of Floating Offshore Wind Turbine Using CFD Method
    Wu Jun
    Meng Long
    Zhao Yongsheng
    He Yanping
    Transactions of Nanjing University of Aeronautics and Astronautics, 2016, 33 (01) : 80 - 87
  • [2] The Impact of Unsteadiness on the Aerodynamic Loads of a Floating Offshore Wind Turbine
    Schulz, Christian W.
    Ozinan, Umut
    Netzband, Stefan
    Cheng, Po Wen
    Abdel-Maksoud, Moustafa
    EERA DEEPWIND CONFERENCE 2023, 2023, 2626
  • [3] COUPLED AERODYNAMIC AND HYDROELASTIC ANALYSIS OF AN OFFSHORE FLOATING WIND TURBINE SYSTEM UNDER WIND AND WAVE LOADS
    Iijima, Kazuhiro
    Kim, Junghyun
    Fujikubo, Masahiko
    PROCEEDINGS OF THE ASME 29TH INTERNATIONAL CONFERENCE ON OCEAN, OFFSHORE AND ARCTIC ENGINEERING 2010, VOL 3, 2010, : 241 - 248
  • [4] An experimental study on the aerodynamic loads of a floating offshore wind turbine under imposed motions
    Taruffi, Federico
    Novais, Felipe
    Vire, Axelle
    WIND ENERGY SCIENCE, 2024, 9 (02) : 343 - 358
  • [5] Coupled aerodynamic and hydrodynamic analyses of upscaled floating offshore wind turbines
    Putra, M. J.
    Oguz, E.
    Sezer-Uzol, N.
    SUSTAINABLE DEVELOPMENT AND INNOVATIONS IN MARINE TECHNOLOGIES, IMAM 2022, 2023, 9 : 229 - 236
  • [6] Dynamic response analysis of a fully coupled aerodynamic-hydrodynamic-mooring-anchor floating offshore wind turbine
    Qiao, Dongsheng
    Zhou, Yichen
    Xu, Binbin
    Qin, Jianmin
    Tang, Guoqiang
    Lu, Lin
    Ou, Jinping
    OCEAN ENGINEERING, 2024, 312
  • [7] Aerodynamic Behavior of a Floating Offshore Wind Turbine
    Lienard, C.
    Boisard, R.
    Daudin, C.
    AIAA JOURNAL, 2020, 58 (09) : 3835 - 3847
  • [8] Dynamics of offshore wind turbine-seabed foundation under hydrodynamic and aerodynamic loads: A coupled numerical way
    He, Kunpeng
    Ye, Jianhong
    RENEWABLE ENERGY, 2023, 202 : 453 - 469
  • [9] THE EFFECTS OF HYDRODYNAMIC AND AERODYNAMIC LOADS ON THE LOW FREQUENCY RESPONSES OF FLOATING OFFSHORE WIND TURBINES
    Land, Edward
    Brindley, Will
    Hu, Zhiqiang
    PROCEEDINGS OF ASME 2022 41ST INTERNATIONAL CONFERENCE ON OCEAN, OFFSHORE & ARCTIC ENGINEERING, OMAE2022, VOL 8, 2022,
  • [10] Hydrodynamic analysis of floating offshore wind turbine
    Chodnekar, Yeshwant Prabhu
    Mandal, Sukomal
    Rao, Balakrishna K.
    8TH INTERNATIONAL CONFERENCE ON ASIAN AND PACIFIC COASTS (APAC 2015), 2015, 116 : 4 - 11