Roles for TAB1 in regulating the IL-1-dependent phosphorylation of the TAB3 regulatory subunit and activity of the TAK1 complex

被引:55
|
作者
Mendoza, Heidi [1 ]
Campbell, David G. [1 ]
Burness, Kerry [2 ]
Hastie, James [2 ]
Ronkina, Natalia [3 ]
Shim, Jae-Hyuck [4 ]
Arthur, J. Simon C. [1 ]
Davis, Roger J. [5 ]
Gaestel, Matthias [3 ]
Johnson, Gary L. [6 ]
Ghosh, Sankar [4 ]
Cohen, Philip [1 ,2 ]
机构
[1] Univ Dundee, MRC Prot Ohosphorylat Unit, Dundee DD1 5EH, Scotland
[2] Univ Dundee, Coll Life Sci, Div Signal Transduct Therapy, Dundee DD1 5EH, Scotland
[3] Hannover Med Sch, Inst Biochem, D-30625 Hannover, Germany
[4] Yale Univ, Sch Med, Anlyan Ctr, Dept Biophys & Biochem S625A, New Haven, CT 06520 USA
[5] Univ Massachusetts, Sch Med, Worcester, MA 01605 USA
[6] Univ N Carolina, Sch Med, Dept Pharmacol, Chapel Hill, NC 27599 USA
基金
英国医学研究理事会;
关键词
interleukin-1 (IL-1); mitogen-activated protein kinase (MAPK) nuclear factor kappa B (NF-kappa B); TAK1(transforming growth factor beta-activated protein kinase 1-bnding protein 1 (TAB1); transforming growth factor beta-activated protein kinase 1(TAK1); tumour necrosis factor alpha (TNF alpha);
D O I
10.1042/BJ20071149
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The protein kinase TAK1 (transforming growth factor-beta-activated kinase 1), which has been implicated in the activation of MAPK (mitogen-activated protein kinase) cascades and the production of inflammatory mediators by LPS (lipopolysaccharide), IL-1 (interleukin 1) and TNF (tumour necrosis factor), comprises the catalytic subunit complexed to the regulatory subunits, termed TAB (TAK1-binding subunit) 1 and either TAB2 or TAB3. We have previously identified a feedback-control mechanism by which p38 alpha MAPK down-regulates TAK1 and showed that p38 alpha MAPK phosphorylates TAB1 at Ser(423) and Thr(431). In the present study, we identified two IL-1-stimulated phosphorylation sites on TAB2 (Ser(372) and Ser(524)) and three on TAB3 (Ser(60), Thr(404) and Ser(506)) in human IL-1R cells [HEK-293 (human embryonic kidney) cells that stably express the IL-1 receptor] and MEFs (mouse embryonic fibroblasts). Ser(372) and Ser(524) of TAB2 are not phosphorylated by pathways dependent on p38 alpha/beta MAPKs, ERK1/2 (extracellular- signal -regulated kinase 1/2) and JNK1/2 (c-Jun N-terminal kinase 1/2). In contrast, Ser(60) and Thr(404) of TAB3 appear to be phosphorylated directly by p38 alpha MAPK, whereas Ser(506) is phosphorylated by MAPKAP-K2/MAPKAPK-K3 (MAPK-activated protein kinase 2 and 3), which are protein kinases activated by p38 alpha MAPK. Studies using TAB1(-/-) MEFs indicate important roles for TAB1 in recruiting p38 alpha MAPK to the TAK1 complex for the phosphorylation of TAB3 at Ser(60) and Thr(404) and in inhibiting the dephosphorylation of TAB3 at Ser(506). TAB1 is also required to induce TAK1 catalytic activity, since neither IL-1 nor TNF alpha was able to stimulate detectable TAK1 activity in TAB1(-/-) MEFs. Surprisingly, the IL-1 and TNF alpha-stimulated activation of MAPK cascades and I kappa B (inhibitor of nuclear factor kappa B) kinases were similar in TAB1(-/-), MEKK3(-/-) [MAPK/ERK (extracellular-signal-regulated kinase) kinase kinase 3] and wild-type MEFs, suggesting that another MAP3K (MAPK kinase kinase) may mediate the IL-1/TNF alpha-induced activation of these signalling pathways in TAB1(-/-) and MEKK3(-/-) MEFs.
引用
收藏
页码:711 / 722
页数:12
相关论文
共 50 条
  • [1] Characterisation of inducible novel phosphorylation sites in TAB1, a regulatory subunit of the protein kinase TAK1
    Wolf, A.
    Thiefes, A.
    Breiholz, O.
    Schneider, H.
    Mittal, R.
    Lochnit, G.
    Kracht, M.
    NAUNYN-SCHMIEDEBERGS ARCHIVES OF PHARMACOLOGY, 2008, 377 : 34 - 34
  • [2] Identification of novel TAK1 and p38 MAPK dependent phosphorylation sites in TAB1, a regulatory subunit of the protein kinase TAK1
    Wolf, A.
    Vahlsing, S.
    Dittrich-Breiholz, O.
    Schneider, H.
    Beuerlein, K.
    Kracht, M.
    NAUNYN-SCHMIEDEBERGS ARCHIVES OF PHARMACOLOGY, 2009, 379 : 29 - 29
  • [3] Enterovirus 71 3C Inhibits Cytokine Expression through Cleavage of the TAK1/TAB1/TAB2/TAB3 Complex
    Lei, Xiaobo
    Han, Ning
    Xiao, Xia
    Jin, Qi
    He, Bin
    Wang, Jianwei
    JOURNAL OF VIROLOGY, 2014, 88 (17) : 9830 - 9841
  • [4] Interleukin-1 and TRAF6-dependent activation of TAK1 in the absence of TAB2 and TAB3
    Zhang, Jiazhen
    Macartney, Thomas
    Peggie, Mark
    Cohen, Philip
    BIOCHEMICAL JOURNAL, 2017, 474 : 2235 - 2248
  • [5] TAB3, a new binding partner of the protein kinase TAK1
    Cheung, PCF
    Nebreda, AR
    Cohen, P
    BIOCHEMICAL JOURNAL, 2004, 378 : 27 - 34
  • [6] Suppression of cell invasiveness by periostin via TAB1/TAK1
    Isono, Takahiro
    Kim, Chul Jang
    Ando, Yukihiro
    Sakurai, Hiroaki
    Okada, Yusaku
    Inoue, Hirokazu
    INTERNATIONAL JOURNAL OF ONCOLOGY, 2009, 35 (02) : 425 - 432
  • [7] TAB1 modulates IL-1α mediated cytokine secretion but is dispensable for TAK1 activation
    Bertelsen, Malene
    Sanfridson, Annika
    CELLULAR SIGNALLING, 2007, 19 (03) : 646 - 657
  • [8] TAK1, but not TAB1 or TAB2, plays an essential role in multiple signaling pathways in vivo
    Shim, JH
    Xiao, CC
    Paschal, AE
    Bailey, ST
    Rao, P
    Hayden, MS
    Lee, KY
    Bussey, C
    Steckel, M
    Tanaka, N
    Yamada, G
    Akira, S
    Matsumoto, K
    Ghosh, S
    GENES & DEVELOPMENT, 2005, 19 (22) : 2668 - 2681
  • [9] Phosphorylation-dependent activation of TAK1 mitogen-activated protein kinase kinase kinase by TAB1
    Sakurai, H
    Miyoshi, H
    Mizukami, J
    Sugita, T
    FEBS LETTERS, 2000, 474 (2-3) : 141 - 145
  • [10] Role of TAK1 and TAB1 in BMP signaling in early Xenopus development
    Shibuya, H
    Iwata, H
    Masuyama, N
    Gotoh, Y
    Yamaguchi, K
    Irie, K
    Matsumoto, K
    Nishida, E
    Ueno, N
    EMBO JOURNAL, 1998, 17 (04): : 1019 - 1028