The dislocation core misfit potential

被引:1
|
作者
Njoroge, K. D. [1 ]
Rading, G. O. [1 ]
Kihiu, J. M. [2 ]
Witcomb, M. J. [3 ]
Cornish, L. A. [3 ,4 ]
机构
[1] Univ Nairobi, Sch Engn, Dept Engn Mech, Nairobi, Kenya
[2] Jomo Kenyatta Univ Agr & Technol, Dept Mech Engn, Nairobi, Kenya
[3] Univ Witwatersrand, DST NRF Ctr Excellence Strong Mat, ZA-2050 Johannesburg, South Africa
[4] Univ Witwatersrand, Sch Chem & Met Engn, ZA-2050 Johannesburg, South Africa
关键词
Embedded atom method; Misfit potential; Lattice distortion; Dislocation core; Path of least resistance (POLR); Body centered cubic; SCREW DISLOCATIONS; TRANSITION-METALS; SIMULATIONS; MODEL; IRON; IMPURITIES; MOBILITY; FE;
D O I
10.1016/j.commatsci.2014.12.027
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The development of a model to extend the range of the embedded atom method (EAM) is presented. The model is founded on the premise that the dislocation core generates a distortion field within the lattice that extends well beyond the range of operation of the embedded atom method. The resulting misfit potential is based on a characteristic function that accounts for long range lattice distortion. The characteristic function was established by the fitting the coefficients to the distortion at given distances from the dislocation core. The misfit potential enabled the determination of long range dislocation interactions and was applied in the simulation of dislocation core stress fields in the body centered cubic Fe lattice. These stress profiles are reported. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:195 / 202
页数:8
相关论文
共 50 条
  • [1] The Misfit Dislocation Core Phase in Complex Oxide Heteroepitaxy
    Bagues, Nuria
    Santiso, Jose
    Esser, Bryan D.
    Williams, Robert E. A.
    McComb, Dave W.
    Konstantinovic, Zorica
    Balcells, Lluis
    Sandiumenge, Felip
    [J]. ADVANCED FUNCTIONAL MATERIALS, 2018, 28 (08)
  • [2] Misfit dislocation loops in composite core-shell nanoparticles
    Gutkin, M. Yu.
    Kolesnikova, A. L.
    Krasnitsky, S. A.
    Romanov, A. E.
    [J]. PHYSICS OF THE SOLID STATE, 2014, 56 (04) : 723 - 730
  • [3] Misfit dislocation loops in composite core-shell nanoparticles
    M. Yu. Gutkin
    A. L. Kolesnikova
    S. A. Krasnitsky
    A. E. Romanov
    [J]. Physics of the Solid State, 2014, 56 : 723 - 730
  • [4] Misfit dislocation loops in hollow core-shell nanoparticles
    Gutkin, M. Yu.
    Kolesnikova, A. L.
    Krasnitckii, S. A.
    Romanov, A. E.
    Shalkovskii, A. G.
    [J]. SCRIPTA MATERIALIA, 2014, 83 : 1 - 4
  • [5] Misfit stresses and their relaxation by misfit dislocation loops in core-shell nanoparticles with truncated spherical cores
    Gutkin, Mikhail Yu
    Kolesnikova, Anna L.
    Mikheev, Dmitry S.
    Romanov, Alexey E.
    [J]. EUROPEAN JOURNAL OF MECHANICS A-SOLIDS, 2020, 81
  • [6] Core-level interaction between edge/screw dislocation and misfit dislocation: A molecular dynamics study
    Suzuki, Yuuhu
    Yashiro, Kisaragi
    Tomita, Yoshihiro
    [J]. Nihon Kikai Gakkai Ronbunshu, A Hen/Transactions of the Japan Society of Mechanical Engineers, Part A, 2007, 73 (11): : 1217 - 1224
  • [7] The competitive nucleation of misfit dislocation dipole and misfit extended dislocation dipole in nanocomposites
    Zhao, Jianfeng
    Liu, Jinlin
    Kang, Guozheng
    An, Linan
    Zhang, Xu
    [J]. ACTA MECHANICA, 2017, 228 (07) : 2541 - 2554
  • [8] Surface/interface effects on the formation of misfit dislocation in a core-shell nanowire
    Enzevaee, C.
    Gutkin, M. Yu
    Shodja, H. M.
    [J]. PHILOSOPHICAL MAGAZINE, 2014, 94 (05) : 492 - 519
  • [9] The competitive nucleation of misfit dislocation dipole and misfit extended dislocation dipole in nanocomposites
    Jianfeng Zhao
    Jinlin Liu
    Guozheng Kang
    Linan An
    Xu Zhang
    [J]. Acta Mechanica, 2017, 228 : 2541 - 2554
  • [10] Axial misfit stress relaxation in core–shell nanowires with polyhedral cores through the nucleation of misfit prismatic dislocation loops
    S. A. Krasnitckii
    A. M. Smirnov
    M. Yu. Gutkin
    [J]. Journal of Materials Science, 2020, 55 : 9198 - 9210