High-throughput single-cell quantification of hundreds of proteins using conventional flow cytometry and machine learning

被引:34
|
作者
Becht, Etienne [1 ]
Tolstrup, Daniel [2 ]
Dutertre, Charles-Antoine [3 ,4 ,5 ]
Morawski, Peter A. [6 ]
Campbell, Daniel J. [6 ,7 ]
Ginhoux, Florent [3 ,5 ,8 ]
Newell, Evan W. [1 ]
Gottardo, Raphael [1 ]
Headley, Mark B. [2 ,7 ]
机构
[1] Fred Hutchinson Canc Res Ctr, Vaccine & Infect Dis Div, 1124 Columbia St, Seattle, WA 98104 USA
[2] Fred Hutchinson Canc Res Ctr, Clin Res Div, 1124 Columbia St, Seattle, WA 98104 USA
[3] Agcy Sci Technol & Res, Singapore Immunol Network, Singapore, Singapore
[4] Duke NUS Med Sch, Program Emerging Infect Dis, Singapore, Singapore
[5] SingHlth Duke NUS Acad Med Ctr, Translat Immunol Inst, Singapore 169856, Singapore
[6] Benaroya Res Inst, Ctr Fundamental Immunol, Seattle, WA USA
[7] Univ Washington, Sch Med, Dept Immunol, Seattle, WA 98115 USA
[8] Shanghai Jiao Tong Univ, Shanghai Inst Immunol, Sch Med, 280 South Chongqing Rd, Shanghai 200025, Peoples R China
来源
SCIENCE ADVANCES | 2021年 / 7卷 / 39期
关键词
HUMAN NAIVE; RESPONSES; MARKERS; IMMUNE; ATLAS;
D O I
10.1126/sciadv.abg0505
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Modern immunologic research increasingly requires high-dimensional analyses to understand the complex milieu of cell types that comprise the tissue microenvironments of disease. To achieve this, we developed Infinity Flow combining hundreds of overlapping flow cytometry panels using machine learning to enable the simultaneous analysis of the coexpression patterns of hundreds of surface-expressed proteins across millions of individual cells. In this study, we demonstrate that this approach allows the comprehensive analysis of the cellular constituency of the steady-state murine lung and the identification of previously unknown cellular heterogeneity in the lungs of melanoma metastasis-bearing mice. We show that by using supervised machine learning, Infinity Flow enhances the accuracy and depth of clustering or dimensionality reduction algorithms. Infinity Flow is a highly scalable, low-cost, and accessible solution to single-cell proteomics in complex tissues.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Smartphone Imaging Flow Cytometry for High-Throughput Single-Cell Analysis
    Aslan, Mahmut Kamil
    Ding, Yun
    Stavrakis, Stavros
    Demello, Andrew J.
    [J]. ANALYTICAL CHEMISTRY, 2023, 95 (39) : 14526 - 14532
  • [2] Deep learning for high-throughput quantification of oligodendrocyte ensheathment at single-cell resolution
    Yu Kang T. Xu
    Daryan Chitsaz
    Robert A. Brown
    Qiao Ling Cui
    Matthew A. Dabarno
    Jack P. Antel
    Timothy E. Kennedy
    [J]. Communications Biology, 2
  • [3] Deep learning for high-throughput quantification of oligodendrocyte ensheathment at single-cell resolution
    Xu, Yu Kang T.
    Chitsaz, Daryan
    Brownl, Robert A.
    Cui, Qiao Ling
    Dabarno, Matthew A.
    Antel, Jack P.
    Kennedy, Timothy E.
    [J]. COMMUNICATIONS BIOLOGY, 2019, 2 (1)
  • [4] Noninvasive High-Throughput Single-Cell Analysis of HIV Protease Activity Using Ratiometric Flow Cytometry
    Gaber, Rok
    Majerle, Andreja
    Jerala, Roman
    Bencina, Mojca
    [J]. SENSORS, 2013, 13 (12): : 16330 - 16346
  • [5] Single-cell approaches to cell competition: High-throughput imaging, machine learning and simulations
    Gradeci, Daniel
    Bove, Anna
    Charras, Guillaume
    Lowe, Alan R.
    Banerjee, Shiladitya
    [J]. SEMINARS IN CANCER BIOLOGY, 2020, 63 : 60 - 68
  • [6] Elastomeric sensor surfaces for high-throughput single-cell force cytometry
    Ivan Pushkarsky
    Peter Tseng
    Dylan Black
    Bryan France
    Lyndon Warfe
    Cynthia J. Koziol-White
    William F. Jester
    Ryan K. Trinh
    Jonathan Lin
    Philip O. Scumpia
    Sherie L. Morrison
    Reynold A. Panettieri
    Robert Damoiseaux
    Dino Di Carlo
    [J]. Nature Biomedical Engineering, 2018, 2 : 124 - 137
  • [7] Elastomeric sensor surfaces for high-throughput single-cell force cytometry
    Pushkarsky, Ivan
    Tseng, Peter
    Black, Dylan
    France, Bryan
    Warfe, Lyndon
    Koziol-White, Cynthia J.
    Jester, William F., Jr.
    Trinh, Ryan K.
    Lin, Jonathan
    Scumpia, Philip O.
    Morrison, Sherie L.
    Panettieri, Reynold A., Jr.
    Damoiseaux, Robert
    Di Carlo, Dino
    [J]. NATURE BIOMEDICAL ENGINEERING, 2018, 2 (02): : 124 - 137
  • [8] High-throughput observation and quantification of ADCC using imaging flow cytometry
    Helguera, Gustavo
    Rodriguez, Jose
    Henery, Shannon
    Catterton, Paul
    Martinez-Maza, Otoniel
    Penichet, Manuel
    [J]. CANCER RESEARCH, 2009, 69
  • [9] Microfluidic Impedance Flow Cytometry Enabling High-Throughput Single-Cell Electrical Property Characterization
    Chen, Jian
    Xue, Chengcheng
    Zhao, Yang
    Chen, Deyong
    Wu, Min-Hsien
    Wang, Junbo
    [J]. INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2015, 16 (05): : 9804 - 9830
  • [10] High-throughput quantitation of inorganic nanoparticle biodistribution at the single-cell level using mass cytometry
    Yu-Sang Sabrina Yang
    Prabhani U. Atukorale
    Kelly D. Moynihan
    Ahmet Bekdemir
    Kavya Rakhra
    Li Tang
    Francesco Stellacci
    Darrell J. Irvine
    [J]. Nature Communications, 8