Giant magnetoresistance in zigzag MoS2 nanoribbons

被引:10
|
作者
Peng, Li [1 ,2 ,3 ]
Yao, Kailun [1 ,2 ]
Wu, Ruqian [4 ]
Wang, Shuling [1 ,2 ]
Zhu, Sicong [1 ,2 ]
Ni, Yun [1 ,2 ]
Zu, Fengxia [1 ,2 ]
Liu, Zuli [1 ,2 ]
Guo, Bin [3 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Phys, Wuhan 430074, Peoples R China
[2] Huazhong Univ Sci & Technol, Wuhan Natl High Magnet Field Ctr, Wuhan 430074, Peoples R China
[3] Wuhan Univ Technol, Sch Sci, Wuhan 430063, Peoples R China
[4] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA
基金
中国国家自然科学基金;
关键词
INTEGRATED-CIRCUITS; ELECTRIC-FIELD; GRAPHENE; PHOTOLUMINESCENCE; TRANSISTOR; NANOSHEETS;
D O I
10.1039/c4cp04892j
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Using first principles calculations based on density functional theory, we investigated the transport properties of zigzag MoS2 nanoribbons with parallel and antiparallel spin configurations. The results show that the parallel configuration has conventional metallic properties while the antiparallel configuration presents semiconductor properties. Consequently, the conduction calculations predict that the zigzag MoS2 nanoribbons exhibit the giant magnetoresistance effect with a value over four orders of magnitude at room temperature by altering the configuration from the parallel to the antiparallel spin junction. By analyzing the spin-resolved band structures of zigzag MoS2 nanoribbons, we clarify that the orbital mismatching near the Fermi level between spin up and spin down is a key factor to generate this large magnetoresistance. Our results indicate that the giant magnetoresistance effect in the zigzag MoS2 nanoribbons remains robust to the change in the ribbon widths and lengths.
引用
收藏
页码:10074 / 10079
页数:6
相关论文
共 50 条
  • [1] Spin-filtering, negative differential resistance, and giant magnetoresistance in (2 x 1) reconstructed zigzag MoS2 nanoribbons
    Lv, Y. Z.
    Zhao, P.
    Liu, D. S.
    [J]. PHYSICA B-CONDENSED MATTER, 2018, 528 : 9 - 13
  • [2] Electronic Structure and Transport Properties of Zigzag MoS2 nanoribbons
    Sharma, Uma Shankar
    Shah, Rashmi
    Mishra, Pankaj Kumar
    [J]. 2ND INTERNATIONAL CONFERENCE ON CONDENSED MATTER AND APPLIED PHYSICS (ICC-2017), 2018, 1953
  • [3] Fundamental insights into the electronic structure of zigzag MoS2 nanoribbons
    Yu, Shansheng
    Zheng, Weitao
    [J]. PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2016, 18 (06) : 4675 - 4683
  • [4] Tunable spin-photovoltaic effect in zigzag MoS2 nanoribbons
    Abdi, Reyhane
    Farghadan, Rouhollah
    [J]. PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2021, 126
  • [5] Width and defect effects on the electronic transport of zigzag MoS2 nanoribbons
    An, Yipeng
    Zhang, Mengjun
    Da, Haixia
    Fu, Zhaoming
    Jiao, Zhaoyong
    Liu, Zhiyong
    [J]. JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2016, 49 (24)
  • [6] Manipulating edge current spin polarization in zigzag MoS2 nanoribbons
    You, Suejeong
    Park, Daehan
    Kim, Heesang
    Kim, Nammee
    [J]. CURRENT APPLIED PHYSICS, 2022, 37 : 52 - 56
  • [7] Stability of edge magnetism against disorder in zigzag MoS2 nanoribbons
    Vancso, Peter
    Hagymasi, Imre
    Castenetto, Pauline
    Lambin, Philippe
    [J]. PHYSICAL REVIEW MATERIALS, 2019, 3 (09):
  • [8] Effect of Nitrogen doping on the electronic transport of zigzag MoS2 nanoribbons
    Wang, Meng
    He, Xiaoyue
    Shen, Minghui
    Yang, Lan
    Shi, Yanyan
    [J]. PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2020, 120
  • [9] Spin Caloritronic Transport of (2×1) Reconstructed Zigzag MoS2 Nanoribbons
    吕钰卓
    赵朋
    刘德胜
    [J]. Chinese Physics Letters, 2017, 34 (10) : 78 - 81
  • [10] Giant magnetoresistance and spin Seebeck coefficient in zigzag α-graphyne nanoribbons
    Zhai, Ming-Xing
    Wang, Xue-Feng
    Vasilopoulos, P.
    Liu, Yu-Shen
    Dong, Yao-Jun
    Zhou, Liping
    Jiang, Yong-Jing
    You, Wen-Long
    [J]. NANOSCALE, 2014, 6 (19) : 11121 - 11129