An intrinsic velocity-independent criterion for superfluid turbulence

被引:168
|
作者
Finne, AP
Araki, T
Blaauwgeers, R
Eltsov, VB
Kopnin, NB
Krusius, M
Skrbek, L
Tsubota, M
Volovik, GE
机构
[1] Aalto Univ, Low Temp Lab, FIN-02015 Helsinki, Finland
[2] Osaka City Univ, Dept Phys, Sumiyoshi Ku, Osaka 5588585, Japan
[3] Leiden Univ, Kamerlingh Onnes Lab, NL-2300 RA Leiden, Netherlands
[4] PL Kapitza Phys Problems Inst, Moscow 119334, Russia
[5] LD Landau Theoret Phys Inst, Moscow 119334, Russia
[6] Acad Sci Czech Republic, Inst Phys, Joint Low Temp Lab, Prague 18000, Czech Republic
[7] Charles Univ Prague, CR-18000 Prague, Czech Republic
关键词
D O I
10.1038/nature01880
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Hydrodynamic flow in classical and quantum fluids can be either laminar or turbulent. Vorticity in turbulent flow is often modelled with vortex filaments. While this represents an idealization in classical fluids, vortices are topologically stable quantized objects in superfluids. Superfluid turbulence(1) is therefore thought to be important for the understanding of turbulence more generally. The fermionic He-3 superfluids are attractive systems to study because their characteristics vary widely over the experimentally accessible temperature regime. Here we report nuclear magnetic resonance measurements and numerical simulations indicating the existence of sharp transition to turbulence in the B phase of superfluid He-3. Above 0.60T(c) (where T-c is the transition temperature for superfluidity) the hydrodynamics are regular, while below this temperature we see turbulent behaviour. The transition is insensitive to the fluid velocity, in striking contrast to current textbook knowledge of turbulence(2). Rather, it is controlled by an intrinsic parameter of the superfluid: the mutual friction between the normal and superfluid components of the flow, which causes damping of the vortex motion.
引用
收藏
页码:1022 / 1025
页数:4
相关论文
共 50 条
  • [1] An intrinsic velocity-independent criterion for superfluid turbulence
    A. P. Finne
    T. Araki
    R. Blaauwgeers
    V. B. Eltsov
    N. B. Kopnin
    M. Krusius
    L. Skrbek
    M. Tsubota
    G. E. Volovik
    [J]. Nature, 2003, 424 : 1022 - 1025
  • [2] Velocity-independent microfluidic flow cytometry
    Eyal, S
    Quake, SR
    [J]. ELECTROPHORESIS, 2002, 23 (16) : 2653 - 2657
  • [3] DYNAMIC-SYSTEMS WITH VELOCITY-INDEPENDENT DAMPING
    HAUPT, P
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1991, 71 (04): : T55 - T57
  • [4] Velocity spectra of superfluid turbulence
    Kivotides, D
    Vassilicos, CJ
    Samuels, DC
    Barenghi, CF
    [J]. EUROPHYSICS LETTERS, 2002, 57 (06): : 845 - 851
  • [5] INTRINSIC CRITICAL VELOCITY OF A SUPERFLUID
    LANGER, JS
    FISHER, ME
    [J]. PHYSICAL REVIEW LETTERS, 1967, 19 (10) : 560 - &
  • [6] General characterisation of Hamiltonians generating velocity-independent forces
    Yip, F.
    Cheung, A. C. H.
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2024, 57 (27)
  • [7] AVA analysis after velocity-independent DMO and imaging
    Gardner, GH
    Canning, A
    [J]. GEOPHYSICS, 1998, 63 (02) : 686 - 691
  • [8] TEMPERATURE AND VELOCITY DEPENDENCE OF SUPERFLUID TURBULENCE
    LADNER, DR
    TOUGH, JT
    [J]. PHYSICAL REVIEW B, 1979, 20 (07): : 2690 - 2701
  • [9] Velocity-independent layer stripping of PP and PS reflection traveltimes
    Dewangan, Pawan
    Tsvankin, Ilya
    [J]. GEOPHYSICS, 2006, 71 (04) : U59 - U65
  • [10] Velocity-independent τ-p moveout in a horizontally layered VTI medium
    Casasanta, Lorenzo
    Fomel, Sergey
    [J]. GEOPHYSICS, 2011, 76 (04) : U45 - U57