Heterogeneous diffusion in comb and fractal grid structures

被引:34
|
作者
Sandev, Trifce [1 ,2 ,3 ]
Schulz, Alexander [1 ]
Kantz, Holger [1 ]
Iomin, Alexander [4 ]
机构
[1] Max Planck Inst Phys Komplexer Syst, Nothnitzer Str 38, D-01187 Dresden, Germany
[2] Radiat Safety Directorate, Partizanski Odredi 143,POB 22, Skopje 1020, North Macedonia
[3] Macedonian Acad Sci & Arts, Res Ctr Comp Sci & Informat Technol, Bul Krste Misirkov 2, Skopje 1000, North Macedonia
[4] Technion, Dept Phys, IL-32000 Haifa, Israel
基金
以色列科学基金会;
关键词
Heterogeneous diffusion; Comb; Fractal grid; RANDOM-WALK; MEDIA;
D O I
10.1016/j.chaos.2017.04.041
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give exact analytical results for diffusion with a power-law position dependent diffusion coefficient along the main channel (backbone) on a comb and grid comb structures. For the mean square displacement along the backbone of the comb we obtain behavior < x(2) (t)> similar to t(1/(2-alpha)), where alpha is the power-law exponent of the position dependent diffusion coefficient D (x) similar to |x|(alpha). Depending on the value of alpha we observe different regimes, from anomalous subdiffusion, superdiffusion, and hyperdiffusion. For the case of the fractal grid we observe the mean square displacement, which depends on the fractal dimension of the structure of the backbones, i.e., < x(2) (t)> similar to t((1+upsilon)/(2-alpha)), where 0 < upsilon< 1 is the fractal dimension of the backbones structure. The reduced probability distribution functions for both cases are obtained by help of the Fox H-functions. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:551 / 555
页数:5
相关论文
共 50 条
  • [1] Fractional diffusion on a fractal grid comb
    Sandev, Trifce
    Iomin, Alexander
    Kantz, Holger
    [J]. PHYSICAL REVIEW E, 2015, 91 (03)
  • [2] USE OF COMB-LIKE MODELS TO MIMIC ANOMALOUS DIFFUSION ON FRACTAL STRUCTURES
    WEISS, GH
    HAVLIN, S
    [J]. PHILOSOPHICAL MAGAZINE B-PHYSICS OF CONDENSED MATTER STATISTICAL MECHANICS ELECTRONIC OPTICAL AND MAGNETIC PROPERTIES, 1987, 56 (06): : 941 - 947
  • [3] On diffusion in fractal soil structures
    Anderson, AN
    Crawford, JW
    McBratney, AB
    [J]. SOIL SCIENCE SOCIETY OF AMERICA JOURNAL, 2000, 64 (01) : 19 - 24
  • [4] ON NONLINEAR DIFFUSION IN FRACTAL STRUCTURES
    PASCAL, JP
    PASCAL, H
    [J]. PHYSICA A, 1994, 208 (3-4): : 351 - 358
  • [5] Reaction and ultraslow diffusion on comb structures
    Liang, Yingjie
    Sandev, Trifce
    Lenzi, Ervin Kaminski
    [J]. PHYSICAL REVIEW E, 2020, 101 (04)
  • [6] DIFFUSION IN HETEROGENEOUS BIPHASE STRUCTURES
    KUCERA, J
    [J]. CZECHOSLOVAK JOURNAL OF PHYSICS SECTION B, 1972, B 22 (04): : 286 - &
  • [7] SCALING PROPERTIES OF DIFFUSION ON COMB-LIKE STRUCTURES
    MATAN, O
    HAVLIN, S
    STAUFFER, D
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1989, 22 (14): : 2867 - 2869
  • [8] Subdiffusion on a fractal comb
    Iomin, Alexander
    [J]. PHYSICAL REVIEW E, 2011, 83 (05):
  • [9] EFFECT OF SURFACE-DIFFUSION IN ELECTRODEPOSITION OF FRACTAL STRUCTURES
    HEPEL, T
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1987, 134 (11) : 2685 - 2690
  • [10] The application of fractal geometry to the design of grid or reticulated shell structures
    Vyzantiadou, M. A.
    Avdelas, A. V.
    Zafiropoulos, S.
    [J]. COMPUTER-AIDED DESIGN, 2007, 39 (01) : 51 - 59