Stable and Convergent Finite Difference Schemes on NonuniformTime Meshes for Distributed-Order Diffusion Equations

被引:0
|
作者
Morgado, M. Luisa [1 ,2 ]
Rebelo, Magda [3 ]
Ferras, Luis L. [4 ]
机构
[1] Univ Lisbon, Ctr Computat & Stochast Math, Inst Super Tecn, P-1049001 Lisbon, Portugal
[2] Univ Tras Os Montes & Alto Douro, Dept Math, UTAD, P-5001801 Vila Real, Portugal
[3] FCT NOVA, NOVA Sch Sci & Technol, Dept Math, Ctr Math & Applicat CMA, P-2829516 Quinta Da Torre, Caparica, Portugal
[4] Univ Minho, Ctr Math CMAT, Campus Azurem, P-4800058 Guimaraes, Portugal
关键词
distributed-order derivatives; finite differences; diffusion equations; nonuniform meshes; stability; convergence; TIME-FRACTIONAL DIFFUSION; WAVE EQUATION; APPROXIMATION;
D O I
10.3390/math9161975
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this work, stable and convergent numerical schemes on nonuniform time meshes are proposed, for the solution of distributed-order diffusion equations. The stability and convergence of the numerical methods are proven, and a set of numerical results illustrate that the use of particular nonuniform time meshes provides more accurate results than the use of a uniform mesh, in the case of nonsmooth solutions.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Two unconditionally stable and convergent difference schemes with the extrapolation method for the one-dimensional distributed-order differential equations
    Gao, Guang-hua
    Sun, Zhi-zhong
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2016, 32 (02) : 591 - 615
  • [2] Finite Difference/Finite Element Methods for Distributed-Order Time Fractional Diffusion Equations
    Weiping Bu
    Aiguo Xiao
    Wei Zeng
    Journal of Scientific Computing, 2017, 72 : 422 - 441
  • [3] Finite Difference/Finite Element Methods for Distributed-Order Time Fractional Diffusion Equations
    Bu, Weiping
    Xiao, Aiguo
    Zeng, Wei
    JOURNAL OF SCIENTIFIC COMPUTING, 2017, 72 (01) : 422 - 441
  • [4] Introducing Graded Meshes in the Numerical Approximation of Distributed-order Diffusion Equations
    Morgado, M. L.
    Rebelo, M.
    NUMERICAL COMPUTATIONS: THEORY AND ALGORITHMS (NUMTA-2016), 2016, 1776
  • [5] Some high-order difference schemes for the distributed-order differential equations
    Gao, Guang-hua
    Sun, Hai-wei
    Sun, Zhi-zhong
    JOURNAL OF COMPUTATIONAL PHYSICS, 2015, 298 : 337 - 359
  • [6] FAST SECOND-ORDER ACCURATE DIFFERENCE SCHEMES FOR TIME DISTRIBUTED-ORDER AND RIESZ SPACE FRACTIONAL DIFFUSION EQUATIONS
    Jian, Huanyan
    Huang, Tingzhu
    Zhao, Xile
    Zhao, Yongliang
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2019, 9 (04): : 1359 - 1392
  • [7] Two Alternating Direction Implicit Difference Schemes for Two-Dimensional Distributed-Order Fractional Diffusion Equations
    Guang-hua Gao
    Zhi-zhong Sun
    Journal of Scientific Computing, 2016, 66 : 1281 - 1312
  • [8] Two Alternating Direction Implicit Difference Schemes for Two-Dimensional Distributed-Order Fractional Diffusion Equations
    Gao, Guang-hua
    Sun, Zhi-zhong
    JOURNAL OF SCIENTIFIC COMPUTING, 2016, 66 (03) : 1281 - 1312
  • [9] A COMPACT FINITE DIFFERENCE SCHEME FOR SPACE-TIME FRACTIONAL DIFFUSION EQUATIONS WITH TIME DISTRIBUTED-ORDER DERIVATIVE
    Feng, Qinghua
    UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2018, 80 (04): : 79 - 90
  • [10] A note on second-order finite-difference schemes on uniform meshes for advection-diffusion equations
    Funaro, D
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 1999, 15 (05) : 581 - 588