A new variational multiscale formulation for stratified incompressible turbulent flows

被引:71
|
作者
Yan, J. [1 ]
Korobenko, A. [2 ]
Tejada-Martinez, A. E. [3 ]
Golshan, R. [3 ]
Bazilevs, Y. [1 ]
机构
[1] Univ Calif San Diego, Dept Struct Engn, San Diego, CA 92093 USA
[2] Univ Calgary, Dept Mech & Mfg Engn, Calgary, AB, Canada
[3] Univ S Florida, Dept Civil & Environm Engn, Tampa, FL 33620 USA
基金
美国国家科学基金会;
关键词
Density-stratified flows; Turbulent channel flow; Self-propelled wake; RBVMS; IGA; FEM; FLUID-STRUCTURE INTERACTION; FINITE-ELEMENT FORMULATION; ISOGEOMETRIC ANALYSIS; MOVING BOUNDARIES; SPACE-TIME; COMPUTATIONS; ALGORITHM; DYNAMICS; GMRES; NURBS;
D O I
10.1016/j.compfluid.2016.12.004
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
For geophysical and environmental flows in the high-Reynolds-number regime, stable density stratification strongly affects the turbulent fluid motions. While turbulent flows, due to the presence of a cascade of spatial and temporal scales, present several challenges to accurate numerical approximation, density stratification in these flows exacerbates the situation further by suppressing vertical velocity fluctuations thereby enhancing the anisotropy of the turbulence. In this paper, based on the framework of residual based variational multiscale (RBVMS) methods, we design a new numerical formulation for incompressible stratified flows that introduces coupling between the velocity fine scales and densityequation residual, and gives improved numerical performance as evidenced by the results of two challenging turbulent flow simulations. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:150 / 156
页数:7
相关论文
共 50 条
  • [1] Isogeometric divergence-conforming variational multiscale formulation of incompressible turbulent flows
    Van Opstal, T. M.
    Yan, J.
    Coley, C.
    Evans, J. A.
    Kvamsdal, T.
    Bazilevs, Y.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2017, 316 : 859 - 879
  • [2] A Review of Variational Multiscale Methods for the Simulation of Turbulent Incompressible Flows
    Ahmed, Naveed
    Chacon Rebollo, Tomas
    John, Volker
    Rubino, Samuele
    ARCHIVES OF COMPUTATIONAL METHODS IN ENGINEERING, 2017, 24 (01) : 115 - 164
  • [3] Variational Multiscale immersed boundary method for incompressible turbulent flows
    Kang, Soonpil
    Masud, Arif
    JOURNAL OF COMPUTATIONAL PHYSICS, 2022, 469
  • [4] A Review of Variational Multiscale Methods for the Simulation of Turbulent Incompressible Flows
    Naveed Ahmed
    Tomás Chacón Rebollo
    Volker John
    Samuele Rubino
    Archives of Computational Methods in Engineering, 2017, 24 : 115 - 164
  • [5] A pseudo-compressible variational multiscale solver for turbulent incompressible flows
    Yang, Liang
    Badia, Santiago
    Codina, Ramon
    COMPUTATIONAL MECHANICS, 2016, 58 (06) : 1051 - 1069
  • [6] A pseudo-compressible variational multiscale solver for turbulent incompressible flows
    Liang Yang
    Santiago Badia
    Ramon Codina
    Computational Mechanics, 2016, 58 : 1051 - 1069
  • [7] The variational multiscale formulation of LES with application to turbulent channel flows
    Hughes, TJR
    Oberai, AA
    GEOMETRY, MECHANICS AND DYNAMICS: VOLUME IN HONOR OF THE 60TH BIRTHDAY OF J. E. MARSDEN, 2002, : 223 - 239
  • [8] ALE-VMS formulation for stratified turbulent incompressible flows with applications
    Bazilevs, Y.
    Korobenko, A.
    Yan, J.
    Pal, A.
    Gohari, S. M. I.
    Sarkar, S.
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2015, 25 (12): : 2349 - 2375
  • [9] Variational Multiscale Methods for incompressible flows
    Gravemeier, V.
    Lenz, S.
    Wall, W. A.
    INTERNATIONAL JOURNAL OF COMPUTING SCIENCE AND MATHEMATICS, 2007, 1 (2-4) : 444 - 466
  • [10] Assessment of variational multiscale models for the large eddy simulation of turbulent incompressible flows
    Colomes, Oriol
    Badia, Santiago
    Codina, Ramon
    Principe, Javier
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2015, 285 : 32 - 63