Integrable structure behind the generalized WDVV equations

被引:16
|
作者
Morozov, A [1 ]
机构
[1] ITEP, Moscow, Russia
关键词
D O I
10.1016/S0370-2693(98)00314-1
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
In the theory of quantum cohomologies the WDVV equations imply integrability of the system (1 partial derivative(mu) - zC(mu))psi= 0. However, in generic situation - of which an example is provided by the Seiberg-Witten theory - there is no distinguished direction (like t(0)) in the moduli space, and such equations for psi appear inconsistent. Instead they are substituted by (C(mu)partial derivative(nu)- C(nu)partial derivative(mu))psi similar to(F(mu)partial derivative(nu)-F(nu)partial derivative(mu))psi=0 where matrices (F-mu)(alpha beta) = partial derivative(alpha)partial derivative(beta)partial derivative(mu)F. (C) 1998 Published by Elsevier Science B.V. Pill rights reserved.
引用
收藏
页码:93 / 96
页数:4
相关论文
共 50 条
  • [1] Integrable Structure Behind the WDVV Equations
    H. Aratyn
    J. van de Leur
    Theoretical and Mathematical Physics, 2003, 134 : 14 - 26
  • [2] Integrable structure behind the WDVV equations
    Aratyn, H
    van de Leur, JV
    THEORETICAL AND MATHEMATICAL PHYSICS, 2003, 134 (01) : 14 - 26
  • [3] Second-order integrable Lagrangians and WDVV equations
    E. V. Ferapontov
    M. V. Pavlov
    Lingling Xue
    Letters in Mathematical Physics, 2021, 111
  • [4] Solutions of the WDVV equations and integrable hierarchies of KP type
    Aratyn, H
    van de Leur, J
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2003, 239 (1-2) : 155 - 182
  • [5] Second-order integrable Lagrangians and WDVV equations
    Ferapontov, E. V.
    Pavlov, M. V.
    Xue, Lingling
    LETTERS IN MATHEMATICAL PHYSICS, 2021, 111 (02)
  • [6] Solutions of the WDVV Equations and Integrable Hierarchies of KP Type
    Henrik Aratyn
    Johan van de Leur
    Communications in Mathematical Physics, 2003, 239 : 155 - 182
  • [7] Generalized Legendre transformations and symmetries of the WDVV equations
    Strachan, Ian A. B.
    Stedman, Richard
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2017, 50 (09)
  • [8] On geometry of a special class of solutions to generalized WDVV equations
    Veselov, AP
    INTEGRABILITY: THE SEIBERG-WITTEN AND WHITHAM EQUATIONS, 2000, : 125 - 135
  • [9] WDVV equations
    Magri, F.
    NUOVO CIMENTO C-COLLOQUIA AND COMMUNICATIONS IN PHYSICS, 2015, 38 (05):
  • [10] Symmetries of the WDVV Equations
    M. L. Geurts
    R. Martini
    G. F. Post
    Acta Applicandae Mathematica, 2002, 72 : 67 - 75