Accelerating the production of bio-oil from hydrothermal liquefaction of microalgae via recycled biochar-supported catalysts

被引:40
|
作者
Kandasamy, Sabariswaran [1 ]
Devarayan, Kesavan [3 ]
Bhuvanendran, Narayanamoorthy [1 ]
Zhang, Bo [1 ]
He, Zhixia [1 ,2 ]
Narayanan, Mathiyazhagan [4 ]
Mathimani, Thangavel [5 ]
Ravichandran, Sabarinathan [1 ]
Pugazhendhi, Arivalagan [6 ,7 ]
机构
[1] Jiangsu Univ, Inst Energy Res, Zhenjiang 212013, Jiangsu, Peoples R China
[2] Jiangsu Univ, Sch Energy & Power Engn, Zhenjiang 212013, Jiangsu, Peoples R China
[3] Tamil Nadu Dr J Jayalalithaa Fisheries Univ, Coll Fisheries Engn, Dept Basic Sci, Nagapattinam 611002, India
[4] MGR Coll, PG & Res Ctr Biotechnol, Hosur, Krishnagiri, India
[5] Natl Inst Technol, Dept Energy & Environm, Tiruchirappalli 620015, Tamil Nadu, India
[6] Ton Duc Thang Univ, Fac Environm & Labour Safety, Innovat Green Prod Synth & Renewable Environm Dev, Ho Chi Minh City, Vietnam
[7] Asia Univ, Coll Med & Hlth Sci, Taichung, Taiwan
来源
基金
中国国家自然科学基金;
关键词
Spirulina platensis; Nanocomposite; In situ catalytic HTL; Ex situ catalytic HTL; Biochar catalytic HTL; Bio-oil; CERIUM OXIDE NANOPARTICLES; CHLORELLA-PYRENOIDOSA; SPIRULINA-PLATENSIS; BIOMASS WASTE; PYROLYSIS; TEMPERATURE; PARAMETER; BIOCRUDE; ETHANOL;
D O I
10.1016/j.jece.2021.105321
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
As a highly effective nanocomposite for hydrothermal liquefaction (HTL) of microalgae, the recycled biochar synthesized from Spirulina platensis and impregnated into CeO2 has been demonstrated. The order of in situ > ex situ > biochar nanocomposites for higher bio-oil. The highest bio-oil conversion of 33% was achieved at the optimum temperature of 250 degrees C. The use of the biochar nanocomposite also resulted in a decrease in the oxygen and nitrogen content of the bio-oil and an increase in its heating value, which was found to be high at 35.64 MJ/kg. With the inclusion of the in situ biochar nanocomposite, energy recovery was increased by up to 65.34%. The current study has shown that low biochar nanocomposite concentrations (0.20 g), low temperature (250 degrees C), and short residence time (30 min) are essential for improved bio-oil yield and quality of bio-oil.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Catalytic hydrothermal liquefaction for bio-oil production over CNTs supported metal catalysts
    Chen, Yu
    Mu, Rentao
    Yang, Mingde
    Fang, Lina
    Wu, Yulong
    Wu, Kejing
    Liu, Ya
    Gong, Jinlong
    [J]. CHEMICAL ENGINEERING SCIENCE, 2017, 161 : 299 - 307
  • [2] Catalytic hydrothermal liquefaction of Euglena sp microalgae over zeolite catalysts for the production of bio-oil
    Zhang, Bo
    Lin, Qisong
    Zhang, Qinhui
    Wu, Kejing
    Pu, Weihua
    Yang, Mingde
    Wu, Yulong
    [J]. RSC ADVANCES, 2017, 7 (15): : 8944 - 8951
  • [3] Microalgae bio-oil production by pyrolysis and hydrothermal liquefaction: Mechanism and characteristics
    Agbulut, Umit
    Sirohi, Ranjna
    Lichtfouse, Eric
    Chen, Wei-Hsin
    Len, Christophe
    Show, Pau Loke
    Le, Anh Tuan
    Nguyen, Xuan Phuong
    Hoang, Anh Tuan
    [J]. BIORESOURCE TECHNOLOGY, 2023, 376
  • [4] Production and characterization of bio-oil from hydrothermal liquefaction of microalgae Dunaliella tertiolecta cake
    Zou Shuping
    Wu Yulong
    Yang Mingde
    Kaleem, Imdad
    Chun, Li
    Tong, Junmao
    [J]. ENERGY, 2010, 35 (12) : 5406 - 5411
  • [5] Bio-oil Production from Hydrothermal Liquefaction of Cyanophyta
    Song, W. H.
    Wang, S. Z.
    Guo, Y.
    [J]. INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND ENVIRONMENTAL ENGINEERING (CSEE 2015), 2015, : 100 - 107
  • [6] Bio-oil Production via Subcritical Hydrothermal Liquefaction of Biomass
    Durak, Halil
    [J]. INTERNATIONAL CONFERENCE ON ADVANCES IN NATURAL AND APPLIED SCIENCES (ICANAS 2017), 2017, 1833
  • [7] Production of bio-oil via hydrothermal liquefaction of birch sawdust
    Malins, Kristaps
    [J]. ENERGY CONVERSION AND MANAGEMENT, 2017, 144 : 243 - 251
  • [8] High-quality bio-oil production via catalytic pyrolysis of biocrude oil from hydrothermal liquefaction of microalgae Spirulina
    Li, Hao
    Dong, Zhen
    Wang, Bao
    Wu, Wenfu
    Cao, Maojiong
    Zhang, Yuanhui
    Liu, Zhidan
    [J]. JOURNAL OF ANALYTICAL AND APPLIED PYROLYSIS, 2023, 173
  • [9] Optimization of bio-oil production from hydrothermal liquefaction of cyanophyta
    Ma, Qiran
    Guo, Yang
    Wang, Shuzhong
    Song, Wenhan
    Zhang, Fan
    Zhang, Xin
    Ni, Shiyao
    Shi, Dongbo
    [J]. Hsi-An Chiao Tung Ta Hsueh/Journal of Xi'an Jiaotong University, 2015, 49 (03): : 56 - 61
  • [10] A review of bio-oil production from hydrothermal liquefaction of algae
    Guo, Yang
    Yeh, Thomas
    Song, Wenhan
    Xu, Donghai
    Wang, Shuzhong
    [J]. RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2015, 48 : 776 - 790