We propose and study a model of spreading which takes into account the strength or quality of contagions as well as the local dynamics occurring at various nodes. The model exhibits quality-dependent exponential time scales at early times leading to a slowly evolving quasi-stationary state. We also investigate the activity of nodes and find a power-law distribution with a robust exponent independent of network topology. Our results are consistent with recent empirical observations.
机构:
Beihang Univ, LMIB, Beijing 100191, Peoples R China
Beihang Univ, Sch Math & Syst Sci, Beijing 100191, Peoples R China
CUNY City Coll, Levich Inst, New York, NY 10031 USA
CUNY City Coll, Dept Phys, New York, NY 10031 USABeihang Univ, LMIB, Beijing 100191, Peoples R China
Pei, Sen
Makse, Hernan A.
论文数: 0引用数: 0
h-index: 0
机构:
CUNY City Coll, Levich Inst, New York, NY 10031 USA
CUNY City Coll, Dept Phys, New York, NY 10031 USABeihang Univ, LMIB, Beijing 100191, Peoples R China
Makse, Hernan A.
[J].
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT,
2013,
机构:
Arizona State Univ, Dept Elect Engn, Tempe, AZ 85287 USAArizona State Univ, Dept Elect Engn, Tempe, AZ 85287 USA
Yang, Rui
Huang, Liang
论文数: 0引用数: 0
h-index: 0
机构:
Arizona State Univ, Dept Elect Engn, Tempe, AZ 85287 USAArizona State Univ, Dept Elect Engn, Tempe, AZ 85287 USA
Huang, Liang
Lai, Ying-Cheng
论文数: 0引用数: 0
h-index: 0
机构:
Arizona State Univ, Dept Elect Engn, Tempe, AZ 85287 USA
Arizona State Univ, Dept Phys & Astron, Tempe, AZ 85287 USAArizona State Univ, Dept Elect Engn, Tempe, AZ 85287 USA