Uniform asymptotic estimate for finite-time ruin probabilities of a time-dependent bidimensional renewal model

被引:25
|
作者
Jiang, Tao [1 ]
Wang, Yuebao [2 ]
Chen, Yang [2 ,3 ]
Xu, Hui [2 ]
机构
[1] Zhejiang Gongshang Univ, Sch Math & Stat, Hangzhou 310018, Peoples R China
[2] Soochow Univ, Sch Math Sci, Suzhou 215006, Peoples R China
[3] Suzhou Univ Sci & Technol, Sch Math & Phys, Suzhou 215009, Peoples R China
来源
基金
美国国家科学基金会;
关键词
Subexponential distribution; Time dependence; Bidimensional renewal model; Finite-time ruin probabilities; Uniform asymptotic estimate; CONSTANT INTEREST FORCE; DISCOUNTED AGGREGATE CLAIMS; HEAVY-TAILED CLAIMS; COMPOUND POISSON MODEL; RISK MODEL; SUBEXPONENTIAL CLAIMS; BEHAVIOR;
D O I
10.1016/j.insmatheco.2015.04.006
中图分类号
F [经济];
学科分类号
02 ;
摘要
This paper studies a bidimensional renewal risk model with constant force of interest and subexponentially distributed claim size vector. Some uniform asymptotic estimates for finite-time ruin probabilities are established when the claim size vector and its inter-arrival time are subject to certain general dependence structure. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:45 / 53
页数:9
相关论文
共 50 条
  • [1] Asymptotic finite-time ruin probabilities in a dependent bidimensional renewal risk model with subexponential claims
    Cheng, Dongya
    Yang, Yang
    Wang, Xinzhi
    JAPAN JOURNAL OF INDUSTRIAL AND APPLIED MATHEMATICS, 2020, 37 (03) : 657 - 675
  • [2] Asymptotic finite-time ruin probabilities in a dependent bidimensional renewal risk model with subexponential claims
    Dongya Cheng
    Yang Yang
    Xinzhi Wang
    Japan Journal of Industrial and Applied Mathematics, 2020, 37 : 657 - 675
  • [3] Uniform asymptotics for ruin probabilities of a time-dependent bidimensional renewal risk model with dependent subexponential claims
    Liu, Zaiming
    Geng, Bingzhen
    Man, Xinyue
    Liu, Xinyu
    STOCHASTICS-AN INTERNATIONAL JOURNAL OF PROBABILITY AND STOCHASTIC PROCESSES, 2023, : 1147 - 1169
  • [4] ASYMPTOTIC ESTIMATES FOR FINITE-TIME RUIN PROBABILITIES IN A GENERALIZED DEPENDENT BIDIMENSIONAL RISK MODEL WITH CMC SIMULATIONS
    Ji, Xinru
    Wang, Bingjie
    Yan, Jigao
    Cheng, Dongya
    JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION, 2023, 19 (03) : 2140 - 2155
  • [5] On asymptotic finite-time ruin probabilities of a new bidimensional risk model with constant interest force and dependent claims
    Geng, Bingzhen
    Liu, Zaiming
    Wang, Shijie
    STOCHASTIC MODELS, 2021, 37 (04) : 608 - 626
  • [6] Asymptotic behavior for finite-time ruin probabilities in a generalized bidimensional risk model with subexponential claims
    Cheng, Fengyang
    Cheng, Dongya
    Chen, Zhangting
    JAPAN JOURNAL OF INDUSTRIAL AND APPLIED MATHEMATICS, 2021, 38 (03) : 947 - 963
  • [7] Asymptotic behavior for finite-time ruin probabilities in a generalized bidimensional risk model with subexponential claims
    Fengyang Cheng
    Dongya Cheng
    Zhangting Chen
    Japan Journal of Industrial and Applied Mathematics, 2021, 38 : 947 - 963
  • [8] Uniform asymptotics for finite-time ruin probabilities of a bidimensional compound risk model with stochastic returns
    Li, Mingjun
    Chen, Zhangting
    Cheng, Dongya
    Zhou, Junyi
    STATISTICS & PROBABILITY LETTERS, 2024, 207
  • [9] Uniform estimates for the finite-time ruin probability in the dependent renewal risk model
    Yang, Yang
    Leipus, Remigijus
    Siaulys, Jonas
    Cang, Yuquan
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 383 (01) : 215 - 225
  • [10] Asymptotic finite-time ruin probability for a bidimensional renewal risk model with constant interest force and dependent subexponential claims
    Yang, Haizhong
    Li, Jinzhu
    INSURANCE MATHEMATICS & ECONOMICS, 2014, 58 : 185 - 192