Stability and topological transformations of liquid droplets on vapor-liquid-solid nanowires

被引:17
|
作者
Schwalbach, Edwin J. [1 ,2 ]
Davis, Stephen H. [3 ]
Voorhees, Peter W. [1 ,3 ]
Warren, James A. [2 ]
Wheeler, Daniel [2 ]
机构
[1] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA
[2] NIST, Div Met, Mat Measurement Lab, Gaithersburg, MD 20899 USA
[3] Northwestern Univ, Dept Engn Sci & Appl Math, Evanston, IL 60208 USA
关键词
MECHANISM; GROWTH;
D O I
10.1063/1.3676451
中图分类号
O59 [应用物理学];
学科分类号
摘要
The Vapor-Liquid-Solid method is one of the most popular techniques for growing semiconducting nanowires, and the stability of the liquid droplet is an important factor controlling wire morphology and, ultimately, functionality. Earlier theoretical work on axisymmetric systems indicates that the lowest-energy liquid configuration varies with surface energies, wire radius, and fluid volume. We test these predictions with a fully dynamic phase-field model that incorporates viscous fluid flow. Under conditions predicted by this earlier theoretical work, we observe the pinning of the liquid to the top face of a nanowire, a condition necessary for wire growth. To study the stability of the droplet, we apply perturbations to the liquid shape and find that the system can transition to a metastable configuration, a local minimum in the energy landscape. Furthermore, the transition pathway to this local minimum depends on the magnitude of the perturbations. Under conditions that favor a liquid on the sidewalls of the wire, we observe a spontaneous transition of the liquid from a droplet to an annular configuration through an intermediate state that is not predicted by theory. The time scales and contact-line speeds for these transitions are determined through simulation and are consistent with approximations based on simple dimensional analysis. (C) 2012 American Institute of Physics. [doi:10.1063/1.3676451]
引用
收藏
页数:10
相关论文
共 50 条
  • [1] From Droplets to Nanowires: Dynamics of Vapor-Liquid-Solid Growth
    Schwarz, K. W.
    Tersoff, J.
    PHYSICAL REVIEW LETTERS, 2009, 102 (20)
  • [2] Oscillations of Truncation in Vapor-Liquid-Solid Nanowires
    Dubrovskii, Vladimir G.
    Glas, Frank
    CRYSTAL GROWTH & DESIGN, 2024,
  • [3] Length distributions of vapor-liquid-solid nanowires
    Berdnikov, Yu.
    Dubrovskii, V. G.
    2018 INTERNATIONAL CONFERENCE LASER OPTICS (ICLO 2018), 2018, : 384 - 384
  • [4] Modeling the nucleation statistics in vapor-liquid-solid nanowires
    Sibirev, N. V.
    Nazarenko, M. V.
    Zeze, D. A.
    Dubrovskii, V. G.
    JOURNAL OF CRYSTAL GROWTH, 2014, 401 : 51 - 55
  • [5] Refinement of Nucleation Theory for Vapor-Liquid-Solid Nanowires
    Dubrovskii, V. G.
    CRYSTAL GROWTH & DESIGN, 2017, 17 (05) : 2589 - 2593
  • [6] Vapor-Liquid-Solid Growth of Endotaxial Semiconductor Nanowires
    Li, Shaozhou
    Huang, Xiao
    Liu, Qing
    Cao, Xiehong
    Huo, Fengwei
    Zhang, Hua
    Gan, Chee Lip
    NANO LETTERS, 2012, 12 (11) : 5565 - 5570
  • [7] Doping nanowires grown by the vapor-liquid-solid mechanism
    Schwalbach, E. J.
    Voorhees, P. W.
    APPLIED PHYSICS LETTERS, 2009, 95 (06)
  • [8] The characteristics and oxidation of Vapor-Liquid-Solid grown Si nanowires
    Westwater, J
    Gosain, DP
    Tomiya, S
    Hirano, Y
    Usui, S
    Ruda, H
    ADVANCES IN MICROCRYSTALLINE AND NANOCRYSTALLINE SEMICONDUCTORS - 1996, 1997, 452 : 237 - 242
  • [9] Lithium fluoride nanowires via vapor-liquid-solid growth
    Jiang, CB
    Wu, B
    Zhang, ZQ
    Lu, L
    Li, SX
    Mao, SX
    APPLIED PHYSICS LETTERS, 2006, 88 (09)
  • [10] Unseeded growth of germanium nanowires by vapor-liquid-solid mechanism
    Zaitseva, N
    Harper, J
    Gerion, D
    Saw, C
    APPLIED PHYSICS LETTERS, 2005, 86 (05) : 1 - 3