The homotopical reduction of a nearest neighbor random walk

被引:0
|
作者
Fontbona, J
Martínez, S
机构
[1] DIM, Santiago, Chile
[2] Univ Chile, Ctr Modelamiento Matemat, UMR 2071, UCHILE,Fac Ciencias Fis & matemat, Santiago, Chile
来源
BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY | 2003年 / 34卷 / 03期
关键词
graphs; nearest neighbor random walk; harmonic measure on trees;
D O I
10.1007/s00574-003-0027-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Consider a nearest neighbor random walk on a graph G and discard all the segments of its trajectory that are homotopically equivalent to a single point. We prove that if the lift of the random walk to the covering tree of G is transient, then the resulting "reduced" trajectories induce a Markov chain on the set of oriented edges of G. We study this chain in relation with the original random walk. As an intermediate result, we give a simple proof of the Markovian structure of the harmonic measure on trees.
引用
收藏
页码:509 / 528
页数:20
相关论文
共 50 条
  • [1] The homotopical reduction of a nearest neighbor random walk*
    J. Fontbona
    S. Martínez
    Bulletin of the Brazilian Mathematical Society, 2003, 34 : 509 - 528
  • [2] Transient Nearest Neighbor Random Walk on the Line
    Csaki, Endre
    Foeldes, Antonia
    Revesz, Pal
    JOURNAL OF THEORETICAL PROBABILITY, 2009, 22 (01) : 100 - 122
  • [3] Transient Nearest Neighbor Random Walk on the Line
    Endre Csáki
    Antónia Földes
    Pál Révész
    Journal of Theoretical Probability, 2009, 22 : 100 - 122
  • [4] Transient Nearest Neighbor Random Walk and Bessel Process
    Csaki, Endre
    Foeldes, Antonia
    Revesz, Pal
    JOURNAL OF THEORETICAL PROBABILITY, 2009, 22 (04) : 992 - 1009
  • [5] Transient Nearest Neighbor Random Walk and Bessel Process
    Endre Csáki
    Antónia Földes
    Pál Révész
    Journal of Theoretical Probability, 2009, 22 : 992 - 1009
  • [6] On the Number of Cutpoints of the Transient Nearest Neighbor Random Walk on the Line
    Csaki, Endre
    Foldes, Antonia
    Revesz, Pal
    JOURNAL OF THEORETICAL PROBABILITY, 2010, 23 (02) : 624 - 638
  • [7] On the Number of Cutpoints of the Transient Nearest Neighbor Random Walk on the Line
    Endre Csáki
    Antónia Földes
    Pál Révész
    Journal of Theoretical Probability, 2010, 23 : 624 - 638
  • [8] The nearest neighbor random walk on subspaces of a vector space and rate of convergence
    DAristotile, AJ
    JOURNAL OF THEORETICAL PROBABILITY, 1995, 8 (02) : 321 - 346
  • [9] Tail estimates for one-dimensional non-nearest-neighbor random walk in random environment
    Gao ZhiQiang
    SCIENCE CHINA-MATHEMATICS, 2010, 53 (02) : 475 - 484
  • [10] Tail estimates for one-dimensional non nearest-neighbor random walk in random environment
    ZhiQiang Gao
    Science China Mathematics, 2010, 53 : 475 - 484