Evaluating supply partner's capability for seasonal products using machine learning techniques

被引:7
|
作者
Hong, Gye-hang [2 ]
Ha, Sung Ho [1 ]
机构
[1] Kyungpook Natl Univ, Sch Business Adm, Taegu 702701, South Korea
[2] Dongbu Financial Ctr, Dongbu CNI, Seoul 135523, South Korea
关键词
supply chain management; supply capability; seasonal products; data mining; multi-criteria decision making;
D O I
10.1016/j.cie.2007.10.009
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We develop a dynamic partner assessment system (DPAS) in order to assess change in a supply partner's capability over a period of time. The system embeds a multi-criteria decision model and machine learning methods, and is designed to evaluate a partner's supply capability that can change over time and to maximize revenue with different procurement conditions across time periods. We apply the system to the procurement and management of the agricultural industry. The results are compared with real-world auction markets. (C) 2007 Elsevier Ltd. All rights reserved.
引用
收藏
页码:721 / 736
页数:16
相关论文
共 50 条
  • [1] Using machine learning techniques for evaluating tomato ripeness
    El-Bendary, Nashwa
    El Hariri, Esraa
    Hassanien, Aboul Ella
    Badr, Amr
    EXPERT SYSTEMS WITH APPLICATIONS, 2015, 42 (04) : 1892 - 1905
  • [2] Evaluating Student Knowledge Assessment Using Machine Learning Techniques
    Alruwais, Nuha
    Zakariah, Mohammed
    SUSTAINABILITY, 2023, 15 (07)
  • [3] Evaluating the sales potential of new products using machine learning techniques and data collected from mobile applications
    Sleiman, Rita
    Nguyen, Quoc-Thong
    Lacaze, Sandra
    Tran, Kim-Phuc
    Thomassey, Sebastien
    INTERNATIONAL JOURNAL OF CLOTHING SCIENCE AND TECHNOLOGY, 2024, 36 (03) : 454 - 473
  • [4] Fraud Prediction in Smart Supply Chains Using Machine Learning Techniques
    Constante-Nicolalde, Fabian-Vinicio
    Guerra-Teran, Paulo
    Perez-Medina, Jorge-Luis
    APPLIED TECHNOLOGIES (ICAT 2019), PT II, 2020, 1194 : 145 - 159
  • [5] Evaluating Railroad Ballast Degradation Trends Using Machine Vision and Machine Learning Techniques
    Delay, Benjamin L.
    Moaveni, Maziar
    Hart, John M.
    Sharpe, Phil
    Tutumluer, Erol
    GEOTECHNICAL FRONTIERS 2017: TRANSPORTATION FACILITIES, STRUCTURES, AND SITE INVESTIGATION, 2017, (277): : 432 - 441
  • [6] Fusion-Based Supply Chain Collaboration Using Machine Learning Techniques
    Ali, Naeem
    Ghazal, Taher M.
    Ahmed, Alia
    Abbas, Sagheer
    Khan, M. A.
    Alzoubi, Haitham M.
    Farooq, Umar
    Ahmad, Munir
    Khan, Muhammad Adnan
    INTELLIGENT AUTOMATION AND SOFT COMPUTING, 2022, 31 (03): : 1671 - 1687
  • [7] Evaluating the tensile strength of reinforced concrete using optimized machine learning techniques
    Albaijan, Ibrahim
    Mahmoodzadeh, Arsalan
    Flaih, Laith R.
    Ibrahim, Hawkar Hashim
    Alashker, Yasser
    Mohammed, Adil Hussein
    ENGINEERING FRACTURE MECHANICS, 2023, 292
  • [8] Evaluating Feature Impact Prior to Phylogenetic Analysis Using Machine Learning Techniques
    Salman, Osama A.
    Hosszú, Gábor
    Information (Switzerland), 2024, 15 (11)
  • [9] Evaluating the Clogging Behavior of Pervious Concrete (PC) Using the Machine Learning Techniques
    Huang, Jiandong
    Zhang, Jia
    Gao, Yuan
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2022, 130 (02): : 805 - 821
  • [10] Evaluating Cross Domain Sentiment Analysis using Supervised Machine Learning Techniques
    Aziz, Azwa Abdul
    Starkey, Andrew
    Bannerman, Marcus Campbell
    PROCEEDINGS OF THE 2017 INTELLIGENT SYSTEMS CONFERENCE (INTELLISYS), 2017, : 689 - 696