Generalization of Samuelson's inequality and location of eigenvalues

被引:4
|
作者
Sharma, R. [1 ]
Saini, R. [1 ]
机构
[1] HP Univ, Dept Math, Shimla 171005, India
关键词
Maximum deviation; central moments; Hermitian matrix; eigenvalues; condition number; polynomial; roots; BOUNDS; VARIANCE; DEVIANT;
D O I
10.1007/s12044-015-0216-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove a generalization of Samuelson's inequality for higher order central moments. Bounds for the eigenvalues are obtained when a given complex n x n matrix has real eigenvalues. Likewise, we discuss bounds for the roots of polynomial equations.
引用
收藏
页码:103 / 111
页数:9
相关论文
共 50 条
  • [1] Generalization of Samuelson’s inequality and location of eigenvalues
    R SHARMA
    R SAINI
    Proceedings - Mathematical Sciences, 2015, 125 : 103 - 111
  • [2] A Generalization of a Levitin and Parnovski Universal Inequality for Eigenvalues
    Saïd Ilias
    Ola Makhoul
    Journal of Geometric Analysis, 2012, 22 : 206 - 222
  • [3] A Generalization of a Levitin and Parnovski Universal Inequality for Eigenvalues
    Ilias, Said
    Makhoul, Ola
    JOURNAL OF GEOMETRIC ANALYSIS, 2012, 22 (01) : 206 - 222
  • [4] A multivariate version of Samuelson's inequality
    Trenkler, G
    Puntanen, S
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2005, 410 : 143 - 149
  • [5] GENERALIZATION OF A DISCRETE OPIAL TYPE INEQUALITY APPLIED TO THE EIGENVALUES OF GRAPH
    Jokanovic, D. S.
    Mirkovic, T. Z.
    MATHEMATICA MONTISNIGRI, 2015, 34 : 5 - 12
  • [6] SOME GENERALIZATIONS AND PROBABILITY VERSIONS OF SAMUELSON'S INEQUALITY
    Jin, Hongwei
    Benitez, Julio
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2017, 20 (01): : 1 - 12
  • [7] EXTENSIONS OF SAMUELSON INEQUALITY
    WOLKOWICZ, H
    STYAN, GPH
    AMERICAN STATISTICIAN, 1979, 33 (03): : 143 - 144
  • [8] ON EXTENSIONS OF SAMUELSON INEQUALITY
    KABE, DG
    AMERICAN STATISTICIAN, 1980, 34 (04): : 249 - 249
  • [9] A NOTE ON SAMUELSON INEQUALITY
    MURTY, VN
    AMERICAN STATISTICIAN, 1990, 44 (01): : 64 - 65
  • [10] On a generalization of Aczel's inequality
    Vong, SeakWeng
    APPLIED MATHEMATICS LETTERS, 2011, 24 (08) : 1301 - 1307