Room temperature negative differential resistance characteristics of polar III-nitride resonant tunneling diodes

被引:44
|
作者
Bayram, C. [1 ]
Vashaei, Z. [1 ]
Razeghi, M. [1 ]
机构
[1] Northwestern Univ, Dept Elect Engn & Comp Sci, Ctr Quantum Devices, Evanston, IL 60208 USA
关键词
GAN; FIELDS; ALN;
D O I
10.1063/1.3484280
中图分类号
O59 [应用物理学];
学科分类号
摘要
III-nitride resonant tunneling diodes (RTDs), consisting Al(0.2)Ga(0.8)N/GaN double-barrier (DB) active layers, were grown on c-plane lateral epitaxial overgrowth (LEO) GaN/sapphire and c-plane freestanding (FS) GaN. RTDs on both templates, fabricated into mesa diameters ranging from 5 to 35 mu m, showed negative differential resistance (NDR) at room temperature. NDR characteristics (voltage and current density at NDR onset and current-peak-to-valley ratio) were analyzed and reported as a function of device size and substrate choice. Our results show that LEO RTDs perform as well as FS ones and DB active layer design and quality have been the bottlenecks in III-nitride RTDs. (C) 2010 American Institute of Physics. [doi:10.1063/1.3484280]
引用
收藏
页数:3
相关论文
共 50 条
  • [1] New Tunneling Features in Polar III-Nitride Resonant Tunneling Diodes
    Encomendero, Jimy
    Faria, Faiza Afroz
    Islam, S. M.
    Protasenko, Vladimir
    Rouvimov, Sergei
    Sensale-Rodriguez, Berardi
    Fay, Patrick
    Jena, Debdeep
    Xing, Huili Grace
    [J]. PHYSICAL REVIEW X, 2017, 7 (04):
  • [2] Molecular beam epitaxy of polar III-nitride resonant tunneling diodes
    Encomendero, Jimy
    Islam, S. M.
    Jena, Debdeep
    Xing, Huili Grace
    [J]. JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A, 2021, 39 (02):
  • [3] Effects of substrate quality and orientation on the characteristics of III-nitride resonant tunneling diodes
    Vashaei, Z.
    Bayram, C.
    McClintock, R.
    Razeghi, M.
    [J]. QUANTUM SENSING AND NANOPHOTONIC DEVICES VIII, 2011, 7945
  • [4] Demonstration of negative differential resistance in GaN/AlN resonant tunneling diodes at room temperature
    Vashaei, Z.
    Bayram, C.
    Razeghi, M.
    [J]. JOURNAL OF APPLIED PHYSICS, 2010, 107 (08)
  • [5] Repeatable room temperature negative differential resistance in AlN/GaN resonant tunneling diodes grown on silicon
    Zhang, Baoqing
    Yang, Liuyun
    Wang, Ding
    Quach, Patrick
    Sheng, Shanshan
    Li, Duo
    Wang, Tao
    Sheng, Bowen
    Li, Tai
    Yang, Jiajia
    Yuan, Ye
    Shen, Bo
    Wang, Xinqiang
    [J]. APPLIED PHYSICS LETTERS, 2022, 121 (19)
  • [6] Repeatable Room Temperature Negative Differential Resistance in AlN/GaN Resonant Tunneling Diodes Grown on Sapphire
    Wang, Ding
    Su, Juan
    Chen, Zhaoying
    Wang, Tao
    Yang, Liuyun
    Sheng, Bowen
    Lin, Shaojun
    Rong, Xin
    Wang, Ping
    Shi, Xiangyang
    Tan, Wei
    Zhang, Jian
    Ge, Weikun
    Shen, Bo
    Liu, Yinong
    Wang, Xinqiang
    [J]. ADVANCED ELECTRONIC MATERIALS, 2019, 5 (02):
  • [7] Reliable GaN-based Resonant Tunneling Diodes with Reproducible Room-temperature Negative Differential Resistance
    Bayram, C.
    Sadana, D. K.
    Vashaei, Z.
    Razeghi, M.
    [J]. QUANTUM SENSING AND NANOPHOTONIC DEVICES IX, 2012, 8268
  • [8] Room temperature asymmetric negative differential resistance characteristics of AlGaN/GaN resonant tunneling diodes grown by metal-organic chemical vapor deposition
    Yang, Wen-Lu
    Yang, Lin-An
    Zhang, Xiao-Yu
    Li, Yang
    Ma, Xiao-Hua
    Hao, Yue
    [J]. SOLID-STATE ELECTRONICS, 2022, 187
  • [9] Highly repeatable room temperature negative differential resistance in AlN/GaN resonant tunneling diodes grown by molecular beam epitaxy
    Growden, Tyler A.
    Storm, David F.
    Zhang, Weidong
    Brown, Elliott R.
    Meyer, David J.
    Fakhimi, Parastou
    Berger, Paul R.
    [J]. APPLIED PHYSICS LETTERS, 2016, 109 (08)
  • [10] Negative differential resistance in ZnO-based resonant tunneling diodes
    Sirkeli, Vadim P.
    Vatavu, Sergiu A.
    Yilmazoglu, Oktay
    Preu, Sascha
    Hartnagel, Hans L.
    [J]. 2019 44TH INTERNATIONAL CONFERENCE ON INFRARED, MILLIMETER, AND TERAHERTZ WAVES (IRMMW-THZ), 2019,