The Limit as p → 1 of the Higher Eigenvalues of the p-Laplacian Operator -Δp

被引:0
|
作者
Sabina De Lis, Jost C. [1 ,2 ]
Segura De Leon, Sergio [3 ]
机构
[1] Univ La Laguna, Dept Anal Matemat, C Astrofis Francisco Sanchez S-N, San Cristobal la Laguna 38203, Spain
[2] Univ La Laguna, IUEA, C Astrofis Francisco Sanchez S-N, San Cristobal la Laguna 38203, Spain
[3] Univ Valencia, Dept Anal Matemat, Dr Moliner 50, Valencia 46100, Spain
关键词
Eigenvalues; eigenfunctions; 1-Laplacian operator; radial solutions; functions of bounded variation; CHEEGER SET; EXISTENCE; UNIQUENESS; EQUATIONS; BEHAVIOR; SPECTRUM;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This work provides a direct proof of the existence for each n is an element of N of the limit lambda((1),n) := lim(p -> 1) lambda((p),n) of the n-th Ljusternik-Schnirelman Dirichlet eigenvalue lambda((p),n) of -Delta(p) in a bounded Lipschitz domain Omega subset of R-N. Most importantly, it is shown that lambda((1),n) defines an eigenvalue of the 1-Laplacian operator -Delta(1), with a well-defined strong associated eigenfunction u(n) is an element of BV(Omega). In the main results of the paper, the radial LS eigenvalues of -Delta(1) are fully described, together with a detailed account on the profiles of their associated eigenfunctions. Our approach does not involve critical point theory for non-smooth functionals, although the definition of the LS-spectrum of -Delta(1) relies on it.
引用
收藏
页码:1395 / 1439
页数:45
相关论文
共 50 条
  • [1] Higher Robin eigenvalues for the p-Laplacian operator as p approaches 1
    de Lis, Jose C. Sabina
    de Leon, Sergio Segura
    [J]. CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2024, 63 (07)
  • [2] On the eigenvalues of the p-Laplacian with varying p
    Huang, YX
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1997, 125 (11) : 3347 - 3354
  • [3] On the eigenvalues for a weighted p-Laplacian operator on metric graphs
    El Aidi, Mohammed
    [J]. COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2019, 64 (04) : 541 - 547
  • [4] LOWER ROUNDS FOR THE FIRST EIGENVALUES OF THE p-LAPLACIAN AND THE WEIGHTED p-LAPLACIAN
    Sun, He-Jun
    Han, Chengyue
    Zeng, Lingzhong
    [J]. MATHEMATICAL INEQUALITIES & APPLICATIONS, 2020, 23 (02): : 585 - 596
  • [5] Extremal p-Laplacian eigenvalues
    Antunes, Pedro R. S.
    [J]. NONLINEARITY, 2019, 32 (12) : 5087 - 5109
  • [6] On the perturbation of eigenvalues for the p-Laplacian
    Melián, JG
    De Lis, JS
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2001, 332 (10): : 893 - 898
  • [7] Mixed eigenvalues of p-Laplacian
    Mu-Fa Chen
    Lingdi Wang
    Yuhui Zhang
    [J]. Frontiers of Mathematics in China, 2015, 10 : 249 - 274
  • [8] EIGENVALUES OF WEIGHTED p-LAPLACIAN
    Wang, Lihan
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2013, 141 (12) : 4357 - 4370
  • [9] Mixed eigenvalues of p-Laplacian
    Chen, Mu-Fa
    Wang, Lingdi
    Zhang, Yuhui
    [J]. FRONTIERS OF MATHEMATICS IN CHINA, 2015, 10 (02) : 249 - 274
  • [10] The convective eigenvalues of the one-dimensional p-Laplacian as p → 1
    de la Calle Ysern, B.
    Sabina de Lis, J. C.
    Segura de Leon, S.
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2020, 484 (01)