Conditional tail expectation of randomly weighted sums with heavy-tailed distributions

被引:9
|
作者
Yang, Yang [1 ,2 ]
Ignataviciute, Egle [3 ]
Siaulys, Jonas [3 ]
机构
[1] Southeast Univ, Sch Econ & Management, Nanjing 210029, Jiangsu, Peoples R China
[2] Nanjing Audit Univ, Dept Stat, Nanjing 211815, Jiangsu, Peoples R China
[3] Vilnius State Univ, Fac Math & Informat, LT-03225 Vilnius, Lithuania
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Randomly weighted sum; Heavy-tailed distribution; Sarmanov copula; Conditional tail expectation; SUBEXPONENTIAL RANDOM-VARIABLES; DEPENDENT RANDOM-VARIABLES; DOMINATED VARIATION; PROBABILITY; MODEL; APPROXIMATION; ASYMPTOTICS; INSURANCE;
D O I
10.1016/j.spl.2015.05.016
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider the tail behavior of the conditional tail expectation E(S-n(theta) vertical bar S-n(theta) > x(q)) when q up arrow 1. Here S-n(theta) = Sigma(n)(i=1) theta X-i(i) and x(q) = VaR(q)(S-n(theta)) = inf{y is an element of R : P(S-n(theta) <= y) >= q}. We are interested in the case when the primary random variables X-1, X-2, ..., X-n are realvalued and regularly varying, while the random weights theta(1), theta(2), ..., theta(n) are nonnegative and not degenerate at zero. We suppose that random vectors (X-1, theta(1)), (X-2, theta(2)), ... (X-n, theta(n)) are independent, while X-k and theta(k) follow a certain dependence structure. We also present the related asymptotic results, some of which hold if distribution functions of X-1, X-2, ..., X-n are long tailed and dominatingly varying. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:20 / 28
页数:9
相关论文
共 50 条