Non-asymptotic confidence sets for input-output transfer functions

被引:0
|
作者
Campi, Marco C. [1 ]
Weyer, Erik [1 ]
机构
[1] Univ Brescia, Dept Electron Automat, Via Branze 38, I-25123 Brescia, Italy
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper we consider the problem of constructing confidence sets for the parameters of linear systems in the presence of arbitrary noise. The developed LSCR method (Leave-out Sign dominated Correlation Regions) delivers confidence regions for the model parameters with guaranteed probability. All results hold rigorously true for any finite number of data points and no asymptotic theory is involved. Moreover, prior knowledge on the uncertainty affecting the data is reduced to a minimum. The approach is illustrated on a simulation example, showing that it delivers practically useful confidence sets with guaranteed probabilities even when the noise is biased.
引用
收藏
页码:158 / +
页数:2
相关论文
共 50 条
  • [1] Non-Asymptotic Confidence Sets for the Parameters of Linear Transfer Functions
    Campi, Marco C.
    Weyer, Erik
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2010, 55 (12) : 2708 - 2720
  • [2] Non-Asymptotic Confidence Sets for Circular Means
    Hotz, Thomas
    Kelma, Florian
    Wieditz, Johannes
    ENTROPY, 2016, 18 (10)
  • [3] Universal, Non-asymptotic Confidence Sets for Circular Means
    Hotz, Thomas
    Kelma, Florian
    Wieditz, Johannes
    GEOMETRIC SCIENCE OF INFORMATION, GSI 2015, 2015, 9389 : 635 - 642
  • [4] Non-asymptotic Confidence Regions for the Transfer Functions of Errors-in-Variables Systems
    Khorasani, Masoud Moravej
    Weyer, Erik
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2022, 67 (05) : 2373 - 2388
  • [5] Generalized transfer functions and input-output equivalence
    Hou, M
    Pugh, AC
    Hayton, GE
    INTERNATIONAL JOURNAL OF CONTROL, 1997, 68 (05) : 1163 - 1178
  • [6] Constructing Universal, Non-asymptotic Confidence Sets for Intrinsic Means on the Circle
    Glock, Matthias
    Hotz, Thomas
    GEOMETRIC SCIENCE OF INFORMATION, GSI 2017, 2017, 10589 : 477 - 485
  • [7] Non-asymptotic confidence ellipsoids for the least squares estimate
    Weyer, E
    Campi, MC
    PROCEEDINGS OF THE 39TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-5, 2000, : 2688 - 2693
  • [8] Non-asymptotic fuzzy estimators based on confidence intervals
    Sfiris, D. S.
    Papadopoulos, B. K.
    INFORMATION SCIENCES, 2014, 279 : 446 - 459
  • [9] Recursive Quantile Estimation: Non-Asymptotic Confidence Bounds
    Chen, Likai
    Keilbar, Georg
    Wu, Wei Biao
    JOURNAL OF MACHINE LEARNING RESEARCH, 2023, 24
  • [10] Non-asymptotic confidence regions for the parameters of EIV systems
    Khorasani, Masoud Moravej
    Weyer, Erik
    AUTOMATICA, 2020, 115