QUADRATIC INTERPOLATION AND RAYLEIGH-RITZ METHODS FOR BIFURCATION COEFFICIENTS

被引:1
|
作者
Greenlee, W. M. [1 ]
Hermi, L. [1 ]
机构
[1] Univ Arizona, Dept Math, Tucson, AZ 85721 USA
关键词
quadratic interpolation; bifurcation; fractional Rayleigh-Ritz; convergence rates; eigenfunction approximation; eigenvalue asymptotics; nonlinear rotating string; harmonic Ritz; DIFFERENTIAL-EQUATIONS; INTERMEDIATE PROBLEMS; BESSEL POTENTIALS; CONVERGENCE; EIGENVALUES;
D O I
10.1137/090750445
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article we study the estimation of bifurcation coefficients in nonlinear branching problems by means of Rayleigh-Ritz approximation to the eigenvectors of the corresponding linearized problem. It is essential that the approximations converge in a norm of sufficient strength to render the nonlinearities continuous. Quadratic interpolation between Hilbert spaces is used to seek sharp rate of convergence results for bifurcation coefficients. Examples from ordinary and partial differential problems are presented.
引用
收藏
页码:2987 / 3019
页数:33
相关论文
共 50 条
  • [1] CALCULATION OF CAPACITANCE COEFFICIENTS BY RAYLEIGH-RITZ METHOD
    BALABAN, P
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, 1977, 24 (09): : 513 - 514
  • [2] SCHWARZ INEQUALITY AND THE METHODS OF RAYLEIGH-RITZ AND TREFFTZ
    DIAZ, JB
    WEINSTEIN, A
    JOURNAL OF MATHEMATICS AND PHYSICS, 1947, 26 (02): : 133 - 136
  • [3] SCHWARZ INEQUALITY AND THE METHODS OF RAYLEIGH-RITZ AND TREFFTZ
    DIAZ, JB
    WEINSTEIN, A
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1947, 53 (05) : 495 - 496
  • [4] New backward error bounds of Rayleigh-Ritz projection methods for quadratic eigenvalue problem
    Wang, Teng
    Feng, Mei
    Wang, Xiang
    Chen, Hongjia
    LINEAR & MULTILINEAR ALGEBRA, 2024, 72 (04): : 678 - 686
  • [5] On the Rayleigh-Ritz method
    Fernandez, Francisco M.
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2025, 63 (03) : 911 - 918
  • [6] A Rayleigh-Ritz Autoencoder
    Terbuch, Anika
    O'Leary, Paul
    Ninevski, Dimitar
    Hagendorfer, Elias Jan
    Schlager, Elke
    Windisch, Andreas
    Schweimer, Christoph
    2023 IEEE INTERNATIONAL INSTRUMENTATION AND MEASUREMENT TECHNOLOGY CONFERENCE, I2MTC, 2023,
  • [7] ON THE RAYLEIGH-RITZ QUOTIENT
    Petrescu-Nita, Alina
    UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2018, 80 (01): : 155 - 160
  • [8] RAYLEIGH-RITZ AND LANCZOS METHODS FOR SYMMETRICAL MATRIX PENCILS
    LANCASTER, P
    YE, Q
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1993, 185 : 173 - 201
  • [9] IMPROVEMENT OF RAYLEIGH-RITZ EIGENFUNCTIONS
    KOHN, W
    SIAM REVIEW, 1972, 14 (03) : 399 - &
  • [10] A generalisation of the Rayleigh-Ritz approximation
    Robbé, M
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2001, 333 (12): : 1117 - 1120