Multilingual Text & Handwritten Digit Recognition and Conversion of Regional languages into Universal Language Using Neural Networks

被引:1
|
作者
Vidhale, Bhushan [1 ]
Khekare, Ganesh [2 ]
Dhule, Chetan [2 ]
Chandankhede, Pankaj [1 ]
Titarmare, Abhijit [1 ]
Tayade, Meenal [1 ]
机构
[1] GH Raisoni Coll Engn, Dept Elect & Telecommun Engg, Nagpur, Maharashtra, India
[2] GH Raisoni Coll Engn, Dept Informat & Technol, Nagpur, Maharashtra, India
关键词
Off-line Handwritten Recognition; Handwritten Character; Pattern Recognition; Feature Extraction; Neural Network;
D O I
10.1109/I2CT51068.2021.9418106
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The Character recognition techniques equate an illustrative identity with the image of character. Handwritten human character recognition is a machine's ability to obtain and recognize handwritten information from various sources such as papers, photos, tactile touch devices etc. Recognition of handwriting and computer characters is an evolving field of study and has broad uses in banks, offices and industries. The key objective of this research work is to develop a knowledgeable framework for "Handwritten Character Recognition (HCR) victimization Neural Network" which might effectively acknowledge selected type-format character victimization as the substitute Neural Network approach. Neural method is the best method for controlling images, thus style parts square measure less all around plot as compared to various designs. Neural computers do parallel results. Neural computers square measure run during a manner that's utterly different from traditional operation. Neural computers square measure conditioned (not programmed) in such a way, that how it's given in an explicit beginning state (data input); they either assign the information (input file or computer file) into one amongst the quantity of categories or permit the initial data to evolve to maximize an explicit fascinating property. In this research work, a purely handwritten digit recognition using machine learning model as well as character recognition matlab model is used. A translator using MATLAB to beat the barrier of various languages is designed. The projected style is also used for English, Marathi and Guajarati text to speech conversion into English language. Input is taken in English, Marathi and Gujrati text manually to the interface or image of written text or handwritten text and output can be translated in English Language by facilitating use of Optical Character Recognition (OCR) technique. The projected methodology is also used to produce help to folks that lack the ability of speech or non-native speakers. On the other hand, purely handwritten digit recognition using machine learning algorithms is used to interpret the human handwriting to the second person easily and effectively.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Handwritten Digit Recognition using Convolution Neural Networks
    Rajput, Shailesh S.
    Choi, Yoonsuk
    2022 IEEE 12TH ANNUAL COMPUTING AND COMMUNICATION WORKSHOP AND CONFERENCE (CCWC), 2022, : 163 - 168
  • [2] Handwritten digit recognition using image processing and neural networks
    Shah, Faisal Tehseen
    Yousaf, Kamran
    WORLD CONGRESS ON ENGINEERING 2007, VOLS 1 AND 2, 2007, : 648 - +
  • [3] Improved handwritten digit recognition using artificial neural networks
    Swain, Debabrata
    Parmar, Badal
    Shah, Hansal
    Gandhi, Aditya
    INTERNATIONAL JOURNAL OF COMPUTING SCIENCE AND MATHEMATICS, 2023, 17 (04) : 353 - 370
  • [4] Handwritten digit recognition with fuzzy neural networks
    Zhao, Hongyu
    Ye, Wenxia
    Jin, Fan
    Xinan Jiaotong Daxue Xuebao/Journal of Southwest Jiaotong University, 1997, 32 (03): : 247 - 252
  • [5] Improved Handwritten Digit Recognition Using Convolutional Neural Networks (CNN)
    Ahlawat, Savita
    Choudhary, Amit
    Nayyar, Anand
    Singh, Saurabh
    Yoon, Byungun
    SENSORS, 2020, 20 (12) : 1 - 18
  • [6] Evolving Neural Networks using Moment Method for Handwritten Digit Recognition
    El Fadili, H.
    Zenkouar, K.
    Qjidaa, H.
    PROCEEDINGS OF WORLD ACADEMY OF SCIENCE, ENGINEERING AND TECHNOLOGY, VOL 6, 2005, : 304 - 307
  • [7] Multi-channel handwritten digit recognition using neural networks
    Chi, ZR
    Lu, ZK
    Chan, FH
    ISCAS '97 - PROCEEDINGS OF 1997 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOLS I - IV: CIRCUITS AND SYSTEMS IN THE INFORMATION AGE, 1997, : 625 - 628
  • [8] Handwritten Digit Recognition for Native Gujarati Language Using Convolutional Neural Network
    Rajyagor, Bhargav
    Rakholia, Rajnish
    Lecture Notes in Networks and Systems, 2367, (393-405):
  • [9] Understanding Convolutional Neural Networks Using A Minimal Model for Handwritten Digit Recognition
    Teow, Matthew Y. W.
    2017 IEEE 2ND INTERNATIONAL CONFERENCE ON AUTOMATIC CONTROL AND INTELLIGENT SYSTEMS (I2CACIS), 2017, : 167 - 172
  • [10] Cascaded Heterogeneous Convolutional Neural Networks for Handwritten Digit Recognition
    Wu, Chunpeng
    Fan, Wei
    He, Yuan
    Sun, Jun
    Naoi, Satoshi
    2012 21ST INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR 2012), 2012, : 657 - 660