Experimental investigations of internal energy dissipation during fracture of fiber-reinforced ultra-high-performance concrete

被引:18
|
作者
Landis, Eric N. [1 ]
Kravchuk, Roman [1 ]
Loshkov, Dmitry [1 ]
机构
[1] Univ Maine, Dept Civil & Environm Engn, Orono, ME 04469 USA
关键词
ultra-high-performance concrete; concrete fracture; X-ray computed tomography; acoustic emission;
D O I
10.1007/s11709-018-0487-1
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Split-cylinder fracture of fiber-reinforced ultra-high-performance concrete (UHPC) was examined using two complementary techniques: X-ray computed tomography (CT) and acoustic emission (AE). Fifty-mm-diameter specimens of two different fiber types were scanned both before and after load testing. From the CT images, fiber orientation was evaluated to establish optimum and pessimum specimen orientations, at which fibers would have maximum and minimum effect, respectively. As expected, fiber orientation affected both the peak load and the toughness of the specimen, with the optimum toughness being between 20% and 30% higher than the pessimum. Cumulative AE energy was also affected commensurately. Posttest CT scans of the specimens were used to measure internal damage. Damage was quantified in terms of internal energy dissipation due to both matrix cracking and fiber pullout by using calibration measurements for each. The results showed that fiber pullout was the dominant energy dissipation mechanism; however, the sum of the internal energy dissipation measured amounted to only 60% of the total energy dissipated by the specimens as measured by the net work of load. It is postulated that localized compaction of the UHPC matrix as well as internal friction between fractured fragments makes up the balance of internal energy dissipation.
引用
收藏
页码:190 / 200
页数:11
相关论文
共 50 条
  • [1] Experimental investigations of internal energy dissipation during fracture of fiber-reinforced ultra-high-performance concrete
    Eric N. Landis
    Roman Kravchuk
    Dmitry Loshkov
    Frontiers of Structural and Civil Engineering, 2019, 13 : 190 - 200
  • [2] Fracture energy of ultra-high-performance fiber-reinforced concrete at high strain rates
    Ngoc Thanh Tran
    Tuan Kiet Tran
    Jeon, Joong Kyu
    Park, Jun Kil
    Kim, Dong Joo
    CEMENT AND CONCRETE RESEARCH, 2016, 79 : 169 - 184
  • [3] Acoustic emission-based classification of energy dissipation mechanisms during fracture of fiber-reinforced ultra-high-performance concrete
    Kravchuk, Roman
    Landis, Eric N.
    CONSTRUCTION AND BUILDING MATERIALS, 2018, 176 : 531 - 538
  • [4] Experimental investigations on tensile strength behavior and microstructure of ultra-high-performance fiber-reinforced concrete
    Sudarshan, N. M.
    Rao, T. Chandrasekhar
    SN APPLIED SCIENCES, 2019, 1 (03):
  • [5] Experimental investigations on tensile strength behavior and microstructure of ultra-high-performance fiber-reinforced concrete
    N. M. Sudarshan
    T. Chandrasekhar Rao
    SN Applied Sciences, 2019, 1
  • [6] Shear resistance of ultra-high-performance fiber-reinforced concrete
    Tri Thuong Ngo
    Park, Jun Kil
    Pyo, Sukhoon
    Kim, Dong Joo
    CONSTRUCTION AND BUILDING MATERIALS, 2017, 151 : 246 - 257
  • [7] Modeling of Ultra-High-Performance Fiber-Reinforced Concrete in Shear
    Zhang, Zhongyue
    Vecchio, Frank J.
    Bentz, Evan C.
    Foster, Stephen J.
    ACI STRUCTURAL JOURNAL, 2022, 119 (01) : 295 - +
  • [8] Compressive behavior of ultra-high-performance fiber-reinforced concrete
    Graybeal, Benjamin A.
    ACI MATERIALS JOURNAL, 2007, 104 (02) : 146 - 152
  • [9] Structural performance of ultra-high-performance fiber-reinforced concrete beams
    Kahanji, Charles
    Ali, Faris
    Nadjai, Ali
    STRUCTURAL CONCRETE, 2017, 18 (02) : 249 - 258
  • [10] Experimental Investigation of Composite Ultra-High-Performance Fiber-Reinforced Concrete and Conventional Concrete Members
    Habel, Katrin
    Denarie, Emmanuel
    Bruhwiler, Eugen
    ACI STRUCTURAL JOURNAL, 2007, 104 (01) : 93 - 101