Segmentation of wheat farmland with improved U-Net on drone images

被引:4
|
作者
Liu, Guoqi [1 ,2 ]
Bai, Lu [1 ]
Zhao, Manqi [1 ]
Zang, Hecang [3 ]
Zheng, Guoqing [3 ]
机构
[1] Henan Normal Univ, Coll Comp & Informat Engn, Xinxiang, Henan, Peoples R China
[2] Big Data Engn Lab Teaching Resource & Assessment, Xinxiang, Henan, Peoples R China
[3] Henan Acad Agr Sci, Inst Agr Econ & Informat, Zhengzhou, Peoples R China
基金
中国国家自然科学基金;
关键词
farmland segmentation; drone images; global attention; interaction mechanism;
D O I
10.1117/1.JRS.16.034511
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Accurate farmland segmentation is essential for modern agriculture and automated navigation. We propose an improved U-Net for farmland area segmentation. The wheat farmland data images were collected at the winter wheat experimental base of the Institute of Agricultural Economics and Information, Henan Academy of Agricultural Sciences. U-Net adopts the encoder-decoder structure and skips connection to achieve segmentation. The downsampling operation in the encoder stage weakens the detailed features. The semantic gap between the decoder and the encoder will cause the sparse wheat seedlings in the farmland cannot be captured. Based on the above problems, the improved U-Net uses a multiscale global attention module (MGA) in the bottleneck layer. MGA forms enhanced features by aggregating multiscale global context information and using an improved attention mechanism. An interaction mechanism (IM) is added between the decoder and the encoder. The encoder-decoder IM concatenates multiple attention units and fuses them with the original features on the encoder side to update the input features to the encoder. To lighten the model, we also define two multiplexed convolution kernel sequences in the code, which are shared by all encoders or decoders. The method proposed in this paper is evaluated on the farmland segmentation dataset. Significantly better segmentation results are achieved compared to classical models (U-Net, U-Net++, PSPNet, FPN, and DeepLabV3). In the case of obtaining similar segmentation results, with a smaller amount of parameters compared with State Of The Art (U-Net3+, ACSNet, PraNet, and CCBANet). We also use the farmland data provided by Sichuan Agricultural University for testing, the Dice is 93.88%, which has good generalization performance. (C) 2022 Society of Photo-Optical Instrumentation Engineers (SPIE)
引用
下载
收藏
页数:14
相关论文
共 50 条
  • [1] An Improved U-Net Method for Sequence Images Segmentation
    Wen, Peizhi
    Sun, Menglong
    Lei, Yongqing
    2019 ELEVENTH INTERNATIONAL CONFERENCE ON ADVANCED COMPUTATIONAL INTELLIGENCE (ICACI 2019), 2019, : 184 - 189
  • [2] E-Res U-Net: An improved U-Net model for segmentation of muscle images
    Zhou, Junsheng
    Lu, Yiwen
    Tao, Siyi
    Cheng, Xuan
    Huang, Chenxi
    EXPERT SYSTEMS WITH APPLICATIONS, 2021, 185
  • [3] E-Res U-Net: An improved U-Net model for segmentation of muscle images
    Zhou, Junsheng
    Lu, Yiwen
    Tao, Siyi
    Cheng, Xuan
    Huang, Chenxi
    Expert Systems with Applications, 2021, 185
  • [4] Choroid segmentation in OCT images based on improved U-net
    Cheng, Xuena
    Chen, Xinjian
    Ma, Yuhui
    Zhu, Weifang
    Fan, Ying
    Shi, Fei
    MEDICAL IMAGING 2019: IMAGE PROCESSING, 2019, 10949
  • [5] Improved Segmentation by Adversarial U-Net
    Sriker, David
    Cohen, Dana
    Cahan, Noa
    Greenspan, Hayit
    MEDICAL IMAGING 2021: COMPUTER-AIDED DIAGNOSIS, 2021, 11597
  • [6] Breast tumor segmentation in ultrasound images: comparing U-net and U-net + +
    de Oliveira, Carlos Eduardo Gonçalves
    Vieira, Sílvio Leão
    Paranaiba, Caio Felipe Brito
    Itikawa, Emerson Nobuyuki
    Research on Biomedical Engineering, 2025, 41 (01)
  • [7] Improved Brain Tumor Segmentation in MR Images with a Modified U-Net
    Alquran, Hiam
    Alslatie, Mohammed
    Rababah, Ali
    Mustafa, Wan Azani
    APPLIED SCIENCES-BASEL, 2024, 14 (15):
  • [8] Improved U-Net Segmentation Algorithm for the Retinal Blood Vessel Images
    Li Daxiang
    Zhang Zhen
    ACTA OPTICA SINICA, 2020, 40 (10)
  • [9] An improved U-Net method for the semantic segmentation of remote sensing images
    Zhongbin Su
    Wei Li
    Zheng Ma
    Rui Gao
    Applied Intelligence, 2022, 52 : 3276 - 3288
  • [10] An improved U-Net method for the semantic segmentation of remote sensing images
    Su, Zhongbin
    Li, Wei
    Ma, Zheng
    Gao, Rui
    APPLIED INTELLIGENCE, 2022, 52 (03) : 3276 - 3288