Epitaxy of semiconductor-superconductor nanowires

被引:0
|
作者
Krogstrup, P. [1 ]
Ziino, N. L. B. [1 ]
Chang, W. [1 ]
Albrecht, S. M. [1 ]
Madsen, M. H. [1 ]
Johnson, E. [1 ,2 ]
Nygard, J. [1 ]
Marcus, C. M. [1 ,3 ]
Jespersen, T. S. [1 ]
机构
[1] Univ Copenhagen, Niels Bohr Inst, Ctr Quantum Devices, DK-2100 Copenhagen, Denmark
[2] Tech Univ Denmark, Dept Wind Energy, DK-4000 Roskilde, Denmark
[3] Univ Copenhagen, Niels Bohr Inst, Nanosci Ctr, DK-2100 Copenhagen, Denmark
基金
新加坡国家研究基金会;
关键词
SUPERCURRENT; ELECTRONS; ALUMINUM; GROWTH;
D O I
10.1038/NMAT4176
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Controlling the properties of semiconductor/metal interfaces is a powerful method for designing functionality and improving the performance of electrical devices. Recently semiconductor/superconductor hybrids have appeared as an important example where the atomic scale uniformity of the interface plays a key role in determining the quality of the induced superconducting gap. Here we present epitaxial growth of semiconductor-metal core-shell nanowires by molecular beam epitaxy, a method that provides a conceptually new route to controlled electrical contacting of nanostructures and the design of devices for specialized applications such as topological and gate-controlled superconducting electronics. Our materials of choice, InAs/Al grown with epitaxially matched single-plane interfaces, and alternative semiconductor/metal combinations allowing epitaxial interface matching in nanowires are discussed. We formulate the grain growth kinetics of the metal phase in general terms of continuum parameters and bicrystal symmetries. The method realizes the ultimate limit of uniform interfaces and seems to solve the soft-gap problem in superconducting hybrid structures.
引用
收藏
页码:400 / 406
页数:7
相关论文
共 50 条
  • [1] Epitaxy of semiconductor-superconductor nanowires
    Krogstrup P.
    Ziino N.L.B.
    Chang W.
    Albrecht S.M.
    Madsen M.H.
    Johnson E.
    Nygård J.
    Marcus C.M.
    Jespersen T.S.
    [J]. Nature Materials, 2015, 14 (4) : 400 - 406
  • [2] Subband occupation in semiconductor-superconductor nanowires
    Woods, Benjamin D.
    Sarma, Sankar Das
    Stanescu, Tudor D.
    [J]. PHYSICAL REVIEW B, 2020, 101 (04)
  • [3] Hard gap in epitaxial semiconductor-superconductor nanowires
    Chang, W.
    Albrecht, S. M.
    Jespersen, T. S.
    Kuemmeth, F.
    Krogstrup, P.
    Nygard, J.
    Marcus, C. M.
    [J]. NATURE NANOTECHNOLOGY, 2015, 10 (03) : 232 - 236
  • [4] Hard gap in epitaxial semiconductor-superconductor nanowires
    Chang W.
    Albrecht S.M.
    Jespersen T.S.
    Kuemmeth F.
    Krogstrup P.
    Nygård J.
    Marcus C.M.
    [J]. Nature Nanotechnology, 2015, 10 (3) : 232 - 236
  • [5] Robustness of topological order in semiconductor-superconductor nanowires in the Coulomb blockade regime
    Zocher, Bjoern
    Horsdal, Mats
    Rosenow, Bernd
    [J]. NEW JOURNAL OF PHYSICS, 2013, 15
  • [6] Semiconductor-Superconductor Optoelectronic Devices
    Panna, D.
    Bouscher, S.
    Cohen, S.
    Rybak, L.
    Ritter, D.
    Hayat, A.
    [J]. 2017 CONFERENCE ON LASERS AND ELECTRO-OPTICS EUROPE & EUROPEAN QUANTUM ELECTRONICS CONFERENCE (CLEO/EUROPE-EQEC), 2017,
  • [7] Semiconductor-superconductor optoelectronic devices
    Bouscher, Shlomi
    Panna, Dmitry
    Hayat, Alex
    [J]. JOURNAL OF OPTICS, 2017, 19 (10)
  • [8] Semiconductor-Superconductor Quantum Optoelectronics
    Panna, Dmitry
    Bouscher, Shlomi
    Balasubramanian, Krishna
    Cohen, Shimon
    Ritter, Dan
    Hayat, Alex
    [J]. 2019 CONFERENCE ON LASERS AND ELECTRO-OPTICS EUROPE & EUROPEAN QUANTUM ELECTRONICS CONFERENCE (CLEO/EUROPE-EQEC), 2019,
  • [9] Non-Hermiticity-stabilized Majorana zero modes in semiconductor-superconductor nanowires
    Liu, Hongchao
    Lu, Ming
    Wu, Yijia
    Liu, Jie
    Xie, X. C.
    [J]. PHYSICAL REVIEW B, 2022, 106 (06)
  • [10] Light amplification in semiconductor-superconductor structures
    Marjieh, Raja
    Sabag, Evyatar
    Hayat, Alex
    [J]. NEW JOURNAL OF PHYSICS, 2016, 18