A nonlinear viscoelastic bend stiffener steady-state formulation

被引:5
|
作者
Caire, Marcelo [1 ]
Vaz, Murilo Augusto [1 ]
机构
[1] Fed Univ Rio de Janeiro UFRJ, Dept Ocean Engn, Rio De Janeiro, RJ, Brazil
关键词
Bend stiffener; Nonlinear viscoelasticity; Steady-state; Frequency domain; Time domain; Flexible riser; Top connection; LARGE DEFLECTION; BEAMS;
D O I
10.1016/j.apor.2017.05.008
中图分类号
P75 [海洋工程];
学科分类号
0814 ; 081505 ; 0824 ; 082401 ;
摘要
Bend stiffeners are essential components of a flexible riser system, employed to ensure a smooth transition at the upper connection and to protect the riser against over bending and from accumulation of fatigue damage. The highly nonlinear rate dependent behavior of these structures directly affects the integrity assessment of the riser in one of its most critical regions, the top connection. A steady-state formulation (disregarding inertial forces) and numerical solution procedure is developed in this work employing the perturbation method for a nonlinear viscoelastic bend stiffener large deflection beam model subjected to harmonic loading conditions. For stochastic loading conditions, the response is calculated employing the superposition principle by summing up the steady-state result of a number of individual frequency components. A time domain formulation is also derived employing the state-variable approach for the numerical solution of the resulting hereditary integral in the governing equations. A case study is presented for the top connection system of a 4 '' ID flexible riser using relaxation and tensile experimental data obtained from a typical class of bend stiffener polyurethane. Harmonic and stochastic input loading conditions are employed for time and frequency domain model comparison/validation and to assess loading history and frequency influence in the curvature response. (C) 2017 Elsevier Ltd. All rights reserved.
引用
下载
收藏
页码:32 / 45
页数:14
相关论文
共 50 条
  • [1] Bend stiffener nonlinear viscoelastic time domain formulation
    Caire, Marcelo
    Vaz, Murilo Augusto
    da Costa, Marysilvia Ferreira
    MARINE STRUCTURES, 2016, 49 : 206 - 223
  • [2] An efficient viscoelastic formulation for steady-state rolling structures
    L. Nasdala
    M. Kaliske
    A. Becker
    H. Rothert
    Computational Mechanics, 1998, 22 : 395 - 403
  • [3] An efficient viscoelastic formulation for steady-state rolling structures
    Nasdala, L
    Kaliske, M
    Becker, A
    Rothert, H
    COMPUTATIONAL MECHANICS, 1998, 22 (05) : 395 - 403
  • [4] CALCULATION OF STEADY-STATE VISCOELASTIC FLOW THROUGH AXISYMMETRICAL CONTRACTIONS WITH THE EEME FORMULATION
    COATES, PJ
    ARMSTRONG, RC
    BROWN, RA
    JOURNAL OF NON-NEWTONIAN FLUID MECHANICS, 1992, 42 (1-2) : 141 - 188
  • [5] Analysis of Steady-State Rolling Contact Problems in Nonlinear Viscoelastic Materials
    Abdelrahman, Alaa A.
    El-Shafei, Ahmed G.
    Mahmoud, Fatin F.
    JOURNAL OF TRIBOLOGY-TRANSACTIONS OF THE ASME, 2015, 137 (03):
  • [6] Nonlinear bend stiffener analysis using a simple formulation and finite element method
    Dong Jin Tong
    Ying Min Low
    John M. Sheehan
    China Ocean Engineering, 2011, 25 : 577 - 590
  • [7] Nonlinear bend stiffener analysis using a simple formulation and finite element method
    Tong Dong Jin
    Low Ying Min
    Sheehan, John M.
    CHINA OCEAN ENGINEERING, 2011, 25 (04) : 577 - 590
  • [8] Nonlinear Bend Stiffener Analysis Using A Simple Formulation and Finite Element Method
    LOW Ying Min
    SHEEHAN John M
    China Ocean Engineering, 2011, 25 (04) : 577 - 590
  • [9] STEADY-STATE PROPAGATION OF A CRACK IN A VISCOELASTIC STRIP
    BARBER, M
    DONLEY, J
    LANGER, JS
    PHYSICAL REVIEW A, 1989, 40 (01): : 366 - 376
  • [10] Steady-state cracks in viscoelastic lattice models
    Kessler, DA
    Levine, H
    PHYSICAL REVIEW E, 1999, 59 (05): : 5154 - 5164