Bottom pressure torque and the vorticity balance from observations in Drake Passage

被引:11
|
作者
Firing, Yvonne L. [1 ,2 ]
Chereskin, Teresa K. [1 ]
Watts, D. Randolph [3 ]
Mazloff, Matthew R. [1 ]
机构
[1] Univ Calif San Diego, Scripps Inst Oceanog, La Jolla, CA 92093 USA
[2] Natl Oceanog Ctr, Southampton, Hants, England
[3] Univ Rhode Isl, Grad Sch Oceanog, Narragansett, RI 02882 USA
基金
美国国家科学基金会;
关键词
ANTARCTIC CIRCUMPOLAR CURRENT; WIND STRESS MEASUREMENTS; SOUTHERN-OCEAN; GULF-STREAM; FORM STRESS; TRANSPORT; VARIABILITY; CIRCULATION; MESOSCALE; MODEL;
D O I
10.1002/2016JC011682
中图分类号
P7 [海洋学];
学科分类号
0707 ;
摘要
The vorticity balance of the Antarctic Circumpolar Current in Drake Passage is examined using 4 years of observations from current-and pressure-recording inverted echo sounders. The time-varying vorticity, planetary and relative vorticity advection, and bottom pressure torque are calculated in a two-dimensional array in the eddy-rich Polar Frontal Zone (PFZ). Bottom pressure torque is also estimated at sites across Drake Passage. Mean and eddy nonlinear relative vorticity advection terms dominate over linear advection in the local (50-km scale) vorticity budget in the PFZ, and are balanced to first order by the divergence of horizontal velocity. Most of this divergence comes from the ageostrophic gradient flow, which also provides a second-order adjustment to the geostrophic relative vorticity advection. Bottom pressure torque is approximately one-third the size of the local depth-integrated divergence. Although the cDrake velocity fields exhibit significant turning with depth throughout Drake Passage even in the mean, surface vorticity advection provides a reasonable representation of the depth-integrated vorticity balance. Observed near-bottom currents are strongly topographically steered, and bottom pressure torques grow large where strong near-bottom flows cross steep topography at small angles. Upslope flow over the northern continental slope dominates the bottom pressure torque in cDrake, and the mean across this Drake Passage transect, 3 to 4x10(-9) m s(-2), exceeds the mean wind stress curl by a factor of 15-20.
引用
收藏
页码:4282 / 4302
页数:21
相关论文
共 50 条
  • [1] Bottom Temperatures in Drake Passage
    Tracey, Karen L.
    Donohue, Kathleen A.
    Watts, D. Randolph
    JOURNAL OF PHYSICAL OCEANOGRAPHY, 2017, 47 (01) : 101 - 122
  • [2] COMPARISONS OF SEA-LEVEL AND BOTTOM PRESSURE MEASUREMENTS AT DRAKE PASSAGE
    PETERSON, RG
    JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 1988, 93 (C10): : 12439 - 12448
  • [3] Interannual variability of bottom temperatures in Drake Passage
    Rubython, KE
    Heywood, KJ
    Vassie, JM
    JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 2001, 106 (C2) : 2779 - 2793
  • [4] Strong bottom currents and cyclogenesis in Drake Passage
    Chereskin, T. K.
    Donohue, K. A.
    Watts, D. R.
    Tracey, K. L.
    Firing, Y. L.
    Cutting, A. L.
    GEOPHYSICAL RESEARCH LETTERS, 2009, 36
  • [5] OBSERVATIONS OF KERGUELEN PETRELS IN DRAKE PASSAGE
    LATHBURY, G
    ARDEA, 1972, 60 (3-4) : 224 - 225
  • [6] Circumpolar bottom water in the Scotia Sea and the Drake Passage
    R. Yu. Tarakanov
    Oceanology, 2010, 50 : 1 - 17
  • [7] Antarctic Bottom Water in the Scotia Sea and the Drake Passage
    Tarakanov, R. Yu.
    OCEANOLOGY, 2009, 49 (05) : 607 - 621
  • [8] Circumpolar Bottom Water in the Scotia Sea and the Drake Passage
    Tarakanov, R. Yu.
    OCEANOLOGY, 2010, 50 (01) : 1 - 17
  • [9] Antarctic bottom water in the Scotia Sea and the Drake Passage
    R. Yu. Tarakanov
    Oceanology, 2009, 49 : 607 - 621
  • [10] OBSERVATIONS OF THE PRINCIPAL TIDAL CURRENTS AT DRAKE PASSAGE
    NOWLIN, WD
    BOTTERO, JS
    PILLSBURY, RD
    JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS AND ATMOSPHERES, 1982, 87 (NC8): : 5752 - 5770