Correlation theory of delayed feedback in stochastic systems below Andronov-Hopf bifurcation

被引:11
|
作者
Pototsky, Andrey [1 ]
Janson, Natalia [1 ]
机构
[1] Univ Loughborough, Dept Math Sci, Loughborough LE11 3TU, Leics, England
来源
PHYSICAL REVIEW E | 2007年 / 76卷 / 05期
基金
英国工程与自然科学研究理事会;
关键词
D O I
10.1103/PhysRevE.76.056208
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Here we address the effect of large delay on the statistical characteristics of noise-induced oscillations in a nonlinear system below Andronov-Hopf bifurcation. In particular, we introduce a theory of these oscillations that does not involve the eigenmode expansion, and can therefore be used for arbitrary delay time. In particular, we show that the correlation matrix (CM) oscillates on two different time scales: on the scale of the main period of noise-induced oscillations, and on the scale close to the delay time. At large values of the delay time, the CM is shown to decay exponentially only for large values of its argument, while for the arguments comparable with the value of the delay, the CM remains finite disregarding the delay time. The definition of the correlation time of the system with delay is discussed.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Andronov-Hopf bifurcation in systems with Preisach operator
    A. A. Zhezherun
    N. A. Kuznetsov
    D. I. Rachinskii
    Doklady Mathematics, 2008, 78
  • [2] Andronov-Hopf Bifurcation in Systems with Preisach Operator
    Zhezherun, A. A.
    Kuznetsov, N. A.
    Rachinskii, D. I.
    DOKLADY MATHEMATICS, 2008, 78 (02) : 705 - 709
  • [3] On the Andronov-Hopf bifurcation theorem
    Izmailov, AF
    DIFFERENTIAL EQUATIONS, 2001, 37 (05) : 640 - 646
  • [4] The Andronov-Hopf bifurcation with weakly oscillating parameters
    M. G. Yumagulov
    L. S. Ibragimova
    S. M. Muzafarov
    I. D. Nurov
    Automation and Remote Control, 2008, 69 : 36 - 41
  • [5] The Andronov-Hopf Bifurcation with 2:1 Resonance
    D. Yu. Volkov
    Journal of Mathematical Sciences, 2005, 128 (2) : 2831 - 2834
  • [6] A degenerate case of Andronov-Hopf bifurcation at infinity
    A. M. Krasnosel’skii
    Automation and Remote Control, 2010, 71 : 2307 - 2319
  • [7] Numerical construction of an Andronov-Hopf bifurcation surface
    Khalin, AL
    NONLINEAR CONTROL SYSTEMS 2001, VOLS 1-3, 2002, : 937 - 940
  • [8] A degenerate case of Andronov-Hopf bifurcation at infinity
    Krasnosel'skii, A. M.
    AUTOMATION AND REMOTE CONTROL, 2010, 71 (11) : 2307 - 2319
  • [9] The Andronov-Hopf bifurcation with weakly oscillating parameters
    Yumagulov, M. G.
    Ibragimova, L. S.
    Muzafarov, S. M.
    Nurov, I. D.
    AUTOMATION AND REMOTE CONTROL, 2008, 69 (01) : 36 - 41
  • [10] The Andronov-Hopf bifurcation with weakly oscillating parameters
    Sibai Institute, Bashkir State University, Sibai, Russia
    不详
    Autom. Remote Control, 2008, 1 (36-41):