Rapid Scale Wind Profiling With Autoregressive Modeling and L-Band Doppler Radar

被引:2
|
作者
Domps, Baptiste [1 ]
Marmain, Julien [1 ]
Guerin, Charles-Antoine [2 ]
机构
[1] Degreane Horizon, F-83390 Cuers, France
[2] Aix Marseille Univ, Univ Toulon, Mediterranean Inst Oceanog, CNRS,IRD, F-83041 Toulon, France
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2022年 / 60卷
关键词
Doppler effect; Atmospheric modeling; Doppler radar; Atmospheric measurements; Wind speed; Radar; Laser radar; Autoregressive (AR) model; L-band; maximum entropy method (MEM); radar wind profiler (RWP); IMPROVED MOMENT ESTIMATION; ORDER SELECTION; NETWORK; VELOCITY; SPECTRA; ECHOES;
D O I
10.1109/TGRS.2022.3207362
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Radar wind profilers (RWPs) are well-established instruments for the probing of the atmospheric boundary layer, with the immense advantage of long-range and all-weather operation capability. One of their main limitations, however, is a relatively long integration time compared with other instruments, such as lidars. In the context of L-band RWP, we show that the use of autoregressive (AR) modeling for the antenna signals combined with the maximum entropy method (MEM) allows for a correct estimation of radial wind velocity profiles even with very short time samples. A systematical analysis of performance is made with the help of synthetic data. These numerical results are further confirmed by an experimental dataset acquired near the landing runways of Paris Charles de Gaulle (CDG) Airport, France, and validated using a colocated optical lidar at the Aerological Station of Payerne, Payerne, Switzerland. It is found that the AR-MEM approach can successfully derive wind estimates using integration times as short as 2.5 s where the classical spectral approach can barely provide any measurement.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Lower atmospheric wind observation by L-band Doppler radar in Thailand
    Leelaruji, N
    Somboonlarp, C
    Sangonchat, P
    Heemakorn, N
    Manyanon, A
    Ohno, Y
    MICROWAVE REMOTE SENSING OF THE ATMOSPHERE AND ENVIRONMENT II, 2000, 4152 : 81 - 88
  • [2] MICRO-DOPPLER ANALYSIS OF KOREAN OFFSHORE WIND TURBINE ON THE L-BAND RADAR
    Jung, Joo-Ho
    Lee, Un
    Kim, Si-Ho
    Park, Sang-Hong
    PROGRESS IN ELECTROMAGNETICS RESEARCH-PIER, 2013, 143 : 87 - 104
  • [3] Development of the L-band tropospheric wind profiler radar
    Imai, Katsuyuki
    Kishimoto, Tetsuo
    Nakagawa, Takao
    Iwai, Tohru
    Shibano, Yoshizo
    Hashiguchi, Hiroyuki
    Fukao, Shoichiro
    SEI Technical Review, 2002, (54): : 6 - 7
  • [4] L-BAND RADAR BACKSCATTER MODELING OF FOREST STANDS
    RICHARDS, JA
    SUN, GQ
    SIMONETT, DS
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 1987, 25 (04): : 487 - 498
  • [5] L-band Doppler radar echoes of the sea surface in coastal zone
    Forget, P
    Saillard, M
    Currier, P
    Broche, P
    Barbin, Y
    IGARSS 2005: IEEE International Geoscience and Remote Sensing Symposium, Vols 1-8, Proceedings, 2005, : 2590 - 2593
  • [6] Sea surface probing with L-band Doppler radar: experiment and theory
    Saillard, M
    Forget, P
    Soriano, G
    Joelson, M
    Broche, P
    Currier, P
    COMPTES RENDUS PHYSIQUE, 2005, 6 (06) : 675 - 682
  • [7] Modeling Sea Clutter Doppler Spectra for L-Band Airborne Radar Under Medium Incident Angles
    Tian, Min
    Liao, Bin
    Yuan, Bo
    Liao, Guisheng
    Fang, Linlin
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2025, 63
  • [8] Reconfigurable L-Band Radar
    Rincon, Rafael F.
    2008 EUROPEAN RADAR CONFERENCE, 2008, : 104 - 107
  • [9] MODELING L-BAND RADAR BACKSCATTER OF ALASKAN BOREAL FOREST
    WANG, Y
    DAY, JL
    DAVIS, FW
    MELACK, JM
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 1993, 31 (06): : 1146 - 1154
  • [10] L-BAND RADAR BACKSCATTER MODELING OF FOREST STANDS.
    Richards, John A.
    Sun, Guo-Qing
    Simonett, David S.
    IEEE Transactions on Geoscience and Remote Sensing, 1987, GE-25 (04): : 487 - 498