Comparison of three options for geologic sequestration of 2CO -: A case study for California

被引:0
|
作者
Benson, SM [1 ]
机构
[1] Univ Calif Berkeley, Earth Sci Div, Berkeley, CA 94720 USA
关键词
D O I
暂无
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Options for sequestration Of CO2 are best viewed in light of the regional distribution Of CO2 sources and potential sequestration sites. This study examines the distribution of carbon emissions from fossil fuel power plants in California and their proximity to three types of reservoirs that may be suitable for sequestration: (1) active or depleted oil fields, (2) active or depleted gas fields, and (3) brine formations. This paper also presents a preliminary assessment of the feasibility of sequestering CO2 generated from large fossil-fuel fired power plants in California and discusses the comparative advantages of three different types of reservoirs for this purpose. Based on a volumetric analysis of sequestration capacity and current CO2 emission rates from oil/gas fired power plants, this analysis suggests that oil reservoirs, gas fields and brine formations can all contribute significantly to sequestration in California. Together they could offer the opportunity to meet both short and long term needs. In the near term, oil and gas reservoirs are the most promising because the trapping structures have already stood the test of time and opportunities for offsetting the cost of sequestration with revenues from enhanced oil and gas production. In the long term, if the trapping mechanisms are adequately understood and deemed adequate, brine formations may provide an even larger capacity for geologic sequestration over much of California.
引用
收藏
页码:299 / 304
页数:6
相关论文
共 50 条
  • [1] Oceanographic criteria for selecting future sites for 2CO sequestration
    Sundfjord, A
    Alendal, G
    Haugan, PM
    Golmen, L
    GREENHOUSE GAS CONTROL TECHNOLOGIES, 2001, : 505 - 510
  • [2] Geologic CO2 sequestration: progress and challenges
    Soltanian, Mohamad Reza
    Dai, Zhenxue
    GEOMECHANICS AND GEOPHYSICS FOR GEO-ENERGY AND GEO-RESOURCES, 2017, 3 (03) : 221 - 223
  • [3] Geologic CO2 sequestration: progress and challenges
    Mohamad Reza Soltanian
    Zhenxue Dai
    Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 2017, 3 : 221 - 223
  • [4] Options for CO2 sequestration in Kuwait
    Neele, Filip
    Vandeweijer, Vincent
    Mayyan, Haya
    Sharma, Shashank Rakeshkumar
    Kamal, Dawood
    13TH INTERNATIONAL CONFERENCE ON GREENHOUSE GAS CONTROL TECHNOLOGIES, GHGT-13, 2017, 114 : 2827 - 2835
  • [5] CO2 Sequestration in Saline Water: An Integral Part of CO2 Sequestration in a Geologic Formation
    Hosein, R.
    Alshakh, S.
    PETROLEUM SCIENCE AND TECHNOLOGY, 2013, 31 (23) : 2534 - 2540
  • [6] Importance of geomechanics for the safety of CO2 geologic sequestration
    Yamamoto, K
    Takahashi, K
    Contribution of Rock Mechanics to the New Century, Vols 1 and 2, 2004, : 467 - 472
  • [7] Dynamic risk assessment for geologic CO2 sequestration
    Chen, Bailian
    Harp, Dylan R.
    Zhang, Yingqi
    Oldenburg, Curtis M.
    Pawar, Rajesh J.
    GONDWANA RESEARCH, 2023, 122 : 232 - 242
  • [8] Biofilm enhanced geologic sequestration of supercritical CO2
    Mitchell, Andrew C.
    Phillips, Adrienne J.
    Hiebert, Randy
    Gerlach, Robin
    Spangler, Lee H.
    Cunningham, Alfred B.
    INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL, 2009, 3 (01) : 90 - 99
  • [9] Soil and geologic formations as antidotes for CO2 sequestration?
    Wang, Lei
    Sarkar, Binoy
    Sonne, Christian
    Ok, Yong Sik
    Tsang, Daniel C. W.
    SOIL USE AND MANAGEMENT, 2020, 36 (03) : 355 - 357
  • [10] Nanoparticle formation during geologic CO2 sequestration
    Jun, Young-Shin
    Hu, Yandi
    Shao, Hongbo
    Ray, Jessica R.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2013, 245