Distributed Particle Swarm Optimization using Optimal Computing Budget Allocation for Multi-Robot Learning

被引:0
|
作者
Di Mario, Ezequiel [1 ]
Navarro, Inaki [1 ]
Martinoli, Alcherio [1 ]
机构
[1] Ecole Polytech Fed Lausanne, Sch Architecture Civil & Environm Engn, Distributed Intelligent Syst & Algorithms Lab, CH-1015 Lausanne, Switzerland
关键词
EVOLUTION;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Particle Swarm Optimization (PSO) is a population-based metaheuristic that can be applied to optimize controllers for multiple robots using only local information. In order to cope with noise in the robotic performance evaluations, different re-evaluation strategies were proposed in the past. In this article, we apply a statistical technique called Optimal Computing Budget Allocation to improve the performance of distributed PSO in the presence of noise. In particular, we compare a distributed PSO OCBA algorithm suitable for resource-constrained mobile robots with a centralized version that uses global information for the allocation. We show that the distributed PSO OCBA outperforms a previous distributed noise-resistant PSO variant, and that the performance of the distributed PSO OCBA approaches that of the centralized one as the communication radius is increased. We also explore different parametrizations of the PSO OCBA algorithm, and show that the choice of parameter values differs from previous guidelines proposed for stand-alone OCBA.
引用
收藏
页码:566 / 572
页数:7
相关论文
共 50 条
  • [1] Distributed scalable multi-robot learning using particle swarm optimization
    Pugh J.
    Martinoli A.
    [J]. Swarm Intelligence, 2009, 3 (03) : 203 - 222
  • [2] Optimal Computing Budget Allocation in Particle Swarm Optimization
    Rada-Vilela, Juan
    Zhang, Mengjie
    Johnston, Mark
    [J]. GECCO'13: PROCEEDINGS OF THE 2013 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, 2013, : 81 - 88
  • [3] SIMULATION OPTIMIZATION USING THE PARTICLE SWARM OPTIMIZATION WITH OPTIMAL COMPUTING BUDGET ALLOCATION
    Zhang, Si
    Chen, Pan
    Lee, Loo Hay
    Peng, Chew Ek
    Chen, Chun-Hung
    [J]. PROCEEDINGS OF THE 2011 WINTER SIMULATION CONFERENCE (WSC), 2011, : 4298 - 4309
  • [4] Distributed adaptation in multi-robot search using Particle Swarm Optimization
    Pugh, Jim
    Martinoli, Alcherio
    [J]. FROM ANIMALS TO ANIMATS 10, PROCEEDINGS, 2008, 5040 : 393 - 402
  • [5] Optimal Computing Budget Allocation for Particle Swarm Optimization in Stochastic Optimization
    Zhang, Si
    Xu, Jie
    Lee, Loo Hay
    Chew, Ek Peng
    Wong, Wai Peng
    Chen, Chun-Hung
    [J]. IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2017, 21 (02) : 206 - 219
  • [6] Development of Multi-Robot Systems Using Particle Swarm Optimization Algorithm for Task Allocation
    Harmanda, Topan Try
    Hardhienata, Medria K. D.
    Priandana, Karlisa
    [J]. 2021 IEEE REGION 10 SYMPOSIUM (TENSYMP), 2021,
  • [7] Distributed gradient and particle swarm optimization for multi-robot motion planning
    Rigatos, Gerasimos G.
    [J]. ROBOTICA, 2008, 26 : 357 - 370
  • [8] Particle Swarm Optimization Based Multi-Robot Task Allocation Using Wireless Sensor Network
    Li Xun
    Ma Hong-xu
    [J]. 2008 INTERNATIONAL CONFERENCE ON INFORMATION AND AUTOMATION, VOLS 1-4, 2008, : 1300 - 1303
  • [9] Distributed Particle Swarm Optimization for Multi-Robot System in Search and Rescue Operations
    Paez, David
    Romero, Juan P.
    Noriega, Brian
    Cardona, Gustavo A.
    Calderon, Juan M.
    [J]. IFAC PAPERSONLINE, 2021, 54 (04): : 1 - 6
  • [10] Particle Swarm Optimization for Cooperative Multi-Robot Task Allocation: A Multi-Objective Approach
    Wei, Changyun
    Ji, Ze
    Cai, Boliang
    [J]. IEEE ROBOTICS AND AUTOMATION LETTERS, 2020, 5 (02) : 2530 - 2537