Regulation of MicroRNA Machinery and Development by Interspecies S-Nitrosylation

被引:64
|
作者
Seth, Puneet [1 ,2 ,3 ]
Hsieh, Paishiun N. [4 ,5 ,6 ]
Jamal, Suhib [1 ,2 ,3 ]
Wang, Liwen [7 ]
Gygi, Steven P. [8 ]
Jain, Mukesh K. [4 ,5 ,9 ]
Coller, Jeff [10 ]
Stamler, Jonathan S. [1 ,2 ,3 ,9 ]
机构
[1] Case Western Reserve Univ, Sch Med, Inst Transformat Mol Med, Cleveland, OH 44106 USA
[2] Case Western Reserve Univ, Sch Med, Dept Med, Cleveland, OH 44106 USA
[3] Univ Hosp Cleveland, Med Ctr, Cleveland, OH 44106 USA
[4] Case Western Reserve Univ, Dept Med, Case Cardiovasc Res Inst, 10900 Euclid Ave, Cleveland, OH 44106 USA
[5] Univ Hosp Cleveland, Med Ctr, Harrington Heart & Vasc Inst, 2103 Cornell Rd, Cleveland, OH 44106 USA
[6] Case Western Reserve Univ, Dept Pathol, 10900 Euclid Ave, Cleveland, OH 44106 USA
[7] Case Western Reserve Univ, Sch Med, Ctr Prote & Bioinformat, Cleveland, OH 44106 USA
[8] Harvard Med Sch, Dept Cell Biol, Boston, MA 02115 USA
[9] Univ Hosp Cleveland, Med Ctr, Harrington Discovery Inst, Cleveland, OH 44106 USA
[10] Case Western Reserve Univ, Ctr RNA Sci & Therapeut, Cleveland, OH 44106 USA
关键词
NITRIC-OXIDE; CAENORHABDITIS-ELEGANS; GUT MICROBIOTA; C; ELEGANS; PROTEIN; LET-7; RNA; NITRATE; NITROSATION; PHOSPHORYLATION;
D O I
10.1016/j.cell.2019.01.037
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Bioactive molecules can pass between microbiota and host to influence host cellular functions. However, general principles of interspecies communication have not been discovered. We show here in C. elegans that nitric oxide derived from resident bacteria promotes widespread S-nitrosylation of the host proteome. We further show that microbiota-dependent S-nitrosylation of C. elegans Argonaute protein (ALG-1)-at a site conserved and S-nitrosylated in mammalian Argonaute 2 (AGO2)-alters its function in controlling gene expression via microRNAs. By selectively eliminating nitric oxide generation by the microbiota or S-nitrosylation in ALG-1, we reveal unforeseen effects on host development. Thus, the microbiota can shape the post-translational landscape of the host proteome to regulate microRNA activity, gene expression, and host development. Our findings suggest a general mechanism by which the microbiota may control host cellular functions, as well as a new role for gasotransmitters.
引用
收藏
页码:1014 / +
页数:24
相关论文
共 50 条
  • [1] Regulation of DNA repair by S-nitrosylation
    Tang, Chi-Hui
    Wei, Wei
    Liu, Limin
    BIOCHIMICA ET BIOPHYSICA ACTA-GENERAL SUBJECTS, 2012, 1820 (06): : 730 - 735
  • [2] S-nitrosylation in the regulation of gene transcription
    Sha, Yonggang
    Marshall, Harvey E.
    BIOCHIMICA ET BIOPHYSICA ACTA-GENERAL SUBJECTS, 2012, 1820 (06): : 701 - 711
  • [3] Regulation of apoptosis by protein S-nitrosylation
    Mannick, J. B.
    AMINO ACIDS, 2007, 32 (04) : 523 - 526
  • [4] Regulation of apoptosis by protein S-nitrosylation
    J. B. Mannick
    Amino Acids, 2007, 32 : 523 - 526
  • [5] Regulation and specificity of S-nitrosylation and denitrosylation
    Tannenbaum, Steven R.
    White, Forest M.
    ACS CHEMICAL BIOLOGY, 2006, 1 (10) : 615 - 618
  • [6] Regulation of Ras Signaling by S-Nitrosylation
    Simao, Sonia
    Agostinho, Rafaela Ribeiro
    Martinez-Ruiz, Antonio
    Araujo, Ines Maria
    ANTIOXIDANTS, 2023, 12 (08)
  • [7] A Multiplex Enzymatic Machinery for Cellular Protein S-nitrosylation
    Seth, Divya
    Hess, Douglas T.
    Hausladen, Alfred
    Wang, Liwen
    Wang, Ya-juan
    Stamler, Jonathan S.
    MOLECULAR CELL, 2018, 69 (03) : 451 - +
  • [8] Regulation of S-Nitrosylation in Aging and Senescence
    Larrick, James W.
    Mendelsohn, Andrew R.
    REJUVENATION RESEARCH, 2019, 22 (02) : 171 - 174
  • [9] S-Nitrosylation in neurogenesis and neuronal development
    Okamoto, Shu-ichi
    Lipton, Stuart A.
    BIOCHIMICA ET BIOPHYSICA ACTA-GENERAL SUBJECTS, 2015, 1850 (08): : 1588 - 1593
  • [10] S-Nitrosylation in Regulation of Inflammation and Cell Damage
    Dasgupta, Subhajit
    Gomez, Jenny-Jaramillo
    Singh, Inderjit
    Khan, Mushfiquddin
    CURRENT DRUG TARGETS, 2018, 19 (15) : 1831 - 1838