Safety, Energy, and Emissions Impacts of Adaptive Cruise Control and Cooperative Adaptive Cruise Control

被引:57
|
作者
Mahdinia, Iman [1 ]
Arvin, Ramin [1 ]
Khattak, Asad J. [1 ]
Ghiasi, Amir [2 ]
机构
[1] Univ Tennessee, Dept Civil & Environm Engn, Knoxville, TN 37996 USA
[2] Leidos Inc, Transportat Res, Reston, VA USA
关键词
MODEL-PREDICTIVE CONTROL; AUTONOMOUS VEHICLES; TRAFFIC FLOW; SYSTEM; TIME; INTERSECTIONS;
D O I
10.1177/0361198120918572
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Connected and automated vehicle technologies have the potential to significantly improve transportation system performance. In particular, advanced driver-assistance systems, such as adaptive cruise control (ACC) and cooperative adaptive cruise control (CACC), may lead to substantial improvements in performance by decreasing driver inputs and taking over control of the vehicle. However, the impacts of these technologies on the vehicle- and system-level energy consumption, emissions, and safety have not been quantified in field tests. The goal of this paper is to study the impacts of automated and cooperative systems in mixed traffic containing conventional, ACC, and CACC vehicles. To reach this goal, experimental data based on real-world conditions are collected (in tests conducted by the Federal Highway Administration and the U.S. Department of Transportation) with presence of ACC, CACC, and conventional vehicles in a vehicle platoon scenario and a cooperative merging scenario. Specifically, a platoon of five vehicles with different vehicle type combinations is analyzed to generate new knowledge about potential safety, energy efficiency, and emission improvement from vehicle automation and cooperation. Results show that adopting the CACC system in a five-vehicle platoon substantially reduces the driving volatility and reduces the risk of rear-end collision which consequently improves safety. Furthermore, it decreases fuel consumption and emissions compared with the ACC system and manually-driven vehicles. Results of the merging scenario show that while the cooperative merging system slightly reduces the driving volatility, the fuel consumption and emissions can increase because of sharper accelerations of CACC vehicles compared with manually-driven vehicles.
引用
收藏
页码:253 / 267
页数:15
相关论文
共 50 条
  • [2] Effects of Adaptive Cruise Control and Cooperative Adaptive Cruise Control on Traffic Flow
    Wang Q.
    Xie N.
    Hou D.-Z.
    Huang Z.-C.
    Li Z.-H.
    [J]. Zhongguo Gonglu Xuebao/China Journal of Highway and Transport, 2019, 32 (06): : 188 - 197and205
  • [3] Impacts of cooperative adaptive cruise control platoons on emissions under traffic oscillation
    Qin, Yanyan
    Wang, Hao
    Ran, Bin
    [J]. JOURNAL OF INTELLIGENT TRANSPORTATION SYSTEMS, 2021, 25 (04) : 376 - 383
  • [4] Longitudinal safety impacts of cooperative adaptive cruise control vehicle's degradation
    Tu, Yu
    Wang, Wei
    Li, Ye
    Xu, Chengcheng
    Xu, Te
    Li, Xueqi
    [J]. JOURNAL OF SAFETY RESEARCH, 2019, 69 : 177 - 192
  • [5] Field evaluation of safety impacts of adaptive cruise control
    Rakha, H
    Hankey, J
    Patterson, A
    Van Aerde, M
    [J]. ITS JOURNAL, 2001, 6 (03): : 225 - 259
  • [6] Extended Cooperative Adaptive Cruise Control
    Montanaro, Umberto
    Tufo, Manuela
    Fiengo, Giovanni
    di Bernardo, Mario
    Salvi, Alessandro
    Santini, Stefania
    [J]. 2014 IEEE INTELLIGENT VEHICLES SYMPOSIUM PROCEEDINGS, 2014, : 599 - 604
  • [7] Ecological Cooperative and Adaptive Cruise Control
    Lei, Mingyue
    Yan, Xuerun
    Hu, Jia
    Wang, Haoran
    [J]. 2023 IEEE 26TH INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS, ITSC, 2023, : 2424 - 2427
  • [8] Impacts of Cooperative Adaptive Cruise Control on Freeway Traffic Flow
    Shladover, Steven E.
    Su, Dongyan
    Lu, Xiao-Yun
    [J]. TRANSPORTATION RESEARCH RECORD, 2012, (2324) : 63 - 70
  • [9] Safety analysis of a vehicle equipped with Cooperative Adaptive Cruise Control
    Ligthart, Jeroen A. J.
    Ploeg, Jeroen
    Semsar-Kazerooni, Elham
    Fusco, Mauro
    Nijmeijer, Henk
    [J]. IFAC PAPERSONLINE, 2018, 51 (09): : 367 - 372
  • [10] Effects of adaptive and cooperative adaptive cruise control on the fuel consumption and emissions at the signalized intersection
    Cui, Hongjun
    Xing, Jiangke
    Li, Xia
    Zhu, Minqing
    [J]. MODERN PHYSICS LETTERS B, 2018, 32 (32):