Nonparametric and semiparametric optimal transformations of markers

被引:1
|
作者
Chiang, Chin-Tsang [1 ]
Chiu, Chih-Heng [1 ]
机构
[1] Natl Taiwan Univ, Dept Math, Taipei 10617, Taiwan
关键词
Area under curve; Nonparametric estimator; Optimal marker; Receiver operating characteristic curve; Single-index model; U-statistic; OPERATING CHARACTERISTIC CURVES; SINGLE-INDEX MODELS; DIMENSION REDUCTION; REGRESSION; ROC; LIKELIHOOD; BOOTSTRAP; AREA;
D O I
10.1016/j.jmva.2011.06.014
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The receiver operating characteristic (ROC) curve of a likelihood-ratio function has been shown to be the highest among all transformations of continuous markers. For any sampling scheme with the same likelihoods, the induced conditional probability is derived to have the same ROC curve and is found to be more useful for inference purposes. To compromise the difficult task of high-dimensionality in fully nonparametric models and the risk of model misspecification in fully parametric ones, an appealing single-index model is also adopted in our optimization problem. Based on a nonparametric estimator of the area under the ROC curve (AUC), we develop its related inferences and provide some simple and easily checked conditions for the validity of asymptotic results. Since the optimal marker is estimated by using a semiparametric or nonparametric model, conventional theoretical approaches might be inappropriate to some circumstances. The applicability of our procedures are further demonstrated through extensive numerical experiments and data from the studies of Pima-Indian diabetes and liver disorders. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:124 / 141
页数:18
相关论文
共 50 条
  • [1] Nonparametric and semiparametric models
    Little, MP
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES A-STATISTICS IN SOCIETY, 2005, 168 : 874 - 875
  • [2] Discussion of nonparametric and semiparametric regression
    Marron, JS
    Müller, HG
    Rice, J
    Wang, JL
    Wang, NY
    Wang, YD
    Davidian, M
    Diggle, P
    Follmann, D
    Louis, TA
    Taylor, J
    Zeger, S
    Goetghebeur, E
    Carroll, RJ
    [J]. STATISTICA SINICA, 2004, 14 (03) : 615 - 629
  • [3] Semiparametric mixtures of nonparametric regressions
    Xiang, Sijia
    Yao, Weixin
    [J]. ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2018, 70 (01) : 131 - 154
  • [4] Perspectives on Nonparametric and Semiparametric Modeling
    Yatchew, Adonis
    [J]. ENERGY JOURNAL, 2008, : 17 - 29
  • [5] Semiparametric mixtures of nonparametric regressions
    Sijia Xiang
    Weixin Yao
    [J]. Annals of the Institute of Statistical Mathematics, 2018, 70 : 131 - 154
  • [6] Using nonparametric optimal transformations - Field applications in the Middle East
    Nashawi, IS
    Malallah, A
    [J]. PETROLEUM SCIENCE AND TECHNOLOGY, 2006, 24 (06) : 629 - 663
  • [7] NONPARAMETRIC KERNEL ESTIMATION FOR SEMIPARAMETRIC MODELS
    ANDREWS, DWK
    [J]. ECONOMETRIC THEORY, 1995, 11 (03) : 560 - 596
  • [8] Nonparametric tests for semiparametric regression models
    Federico Ferraccioli
    Laura M. Sangalli
    Livio Finos
    [J]. TEST, 2023, 32 : 1106 - 1130
  • [9] NONPARAMETRIC AND SEMIPARAMETRIC ESTIMATION WITH DISCRETE REGRESSORS
    DELGADO, MA
    MORA, J
    [J]. ECONOMETRICA, 1995, 63 (06) : 1477 - 1484
  • [10] Nonparametric tests for semiparametric regression models
    Ferraccioli, Federico
    Sangalli, Laura M. M.
    Finos, Livio
    [J]. TEST, 2023, 32 (03) : 1106 - 1130