Strong solutions to stochastic wave equations with values in Riemannian manifolds

被引:34
|
作者
Brzezniak, Zdzislaw [1 ]
Ondrejat, Martin [2 ]
机构
[1] Univ York, Dept Math, York YO10 5DD, N Yorkshire, England
[2] Acad Sci Czech Republic, Inst Math, CR-11567 Prague, Czech Republic
关键词
stochastic wave equation; geometric wave equation;
D O I
10.1016/j.jfa.2007.03.034
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let M be a d-dimensional compact Riemannian manifold. We prove existence of a unique global strong solution of the stochastic wave equation D-t partial derivative(t)u = D-x partial derivative(x)u + Y-u (partial derivative(t)u, partial derivative(x)u) V, where Y is a C-1-smooth transformation and W is a spatially homogeneous Wiener process on R whose spectral measure has finite moments up to order 2. (c) 2007 Published by Elsevier Inc.
引用
收藏
页码:449 / 481
页数:33
相关论文
共 50 条