Point estimation with exponentially tilted empirical likelihood

被引:113
|
作者
Schennach, Susanne M. [1 ]
机构
[1] Univ Chicago, Chicago, IL 60637 USA
来源
ANNALS OF STATISTICS | 2007年 / 35卷 / 02期
关键词
entropy; higher-order asymptotics; misspecified models;
D O I
10.1214/009053606000001208
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Parameters defined via general estimating equations (GEE) can be estimated by maximizing the empirical likelihood (EL). Newey and Smith [Econometrica 72 (2004) 219-255] have recently shown that this EL estimator exhibits desirable higher-order asymptotic properties, namely, that its O(n(-1)) bias is small and that bias-corrected EL is higher-order efficient. Although EL possesses these properties when the model is correctly specified, this paper shows that, in the presence of model misspecification, EL may cease to be root n convergent when the functions defining the moment conditions are unbounded (even when their expectations are bounded). In contrast, the related exponential tilting (ET) estimator avoids this problem. This paper shows that the ET and EL estimators can be naturally combined to yield an estimator called exponentially tilted empirical likelihood (ETEL) exhibiting the same O(n(-1)) bias and the same O(n(-2)) variance as EL, while maintaining root n convergence under model misspecification.
引用
收藏
页码:634 / 672
页数:39
相关论文
共 50 条
  • [1] Bayesian exponentially tilted empirical likelihood
    Schennach, SM
    BIOMETRIKA, 2005, 92 (01) : 31 - 46
  • [2] Testing with Exponentially Tilted Empirical Likelihood
    Felipe, A.
    Martin, N.
    Miranda, P.
    Pardo, L.
    METHODOLOGY AND COMPUTING IN APPLIED PROBABILITY, 2018, 20 (04) : 1319 - 1358
  • [3] Testing with Exponentially Tilted Empirical Likelihood
    A. Felipe
    N. Martín
    P. Miranda
    L. Pardo
    Methodology and Computing in Applied Probability, 2018, 20 : 1319 - 1358
  • [4] An approximated exponentially tilted empirical likelihood estimator of moment condition models
    Jin, Fei
    Wang, Yuqin
    ECONOMETRIC REVIEWS, 2024, 43 (06) : 405 - 433
  • [5] Bayesian inference for risk minimization via exponentially tilted empirical likelihood
    Tang, Rong
    Yang, Yun
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2022, 84 (04) : 1257 - 1286
  • [6] Inference under unequal probability sampling with the Bayesian exponentially tilted empirical likelihood
    Yiu, A.
    Goudie, R. J. B.
    Tom, B. D. M.
    BIOMETRIKA, 2020, 107 (04) : 857 - 873
  • [7] Adjusted Exponentially Tilted Likelihood with Applications to Brain Morphology
    Zhu, Hongtu
    Zhou, Haibo
    Chen, Jiahua
    Li, Yimei
    Lieberman, Jeffrey
    Styner, Martin
    BIOMETRICS, 2009, 65 (03) : 919 - 927
  • [8] Maximum likelihood estimation of a change-point for exponentially distributed random variables
    Fotopoulos, S
    Jandhyala, V
    STATISTICS & PROBABILITY LETTERS, 2001, 51 (04) : 423 - 429
  • [9] Robust estimation with exponentially tilted Hellinger distance
    Antoine, Bertille
    Dovonon, Prosper
    JOURNAL OF ECONOMETRICS, 2021, 224 (02) : 330 - 344
  • [10] Exponentially tilted likelihood inference on growing dimensional unconditional moment models
    Tang, Niansheng
    Yan, Xiaodong
    Zhao, Puying
    JOURNAL OF ECONOMETRICS, 2018, 202 (01) : 57 - 74