Text Representation in Multi-label Classification: Two New Input Representations

被引:0
|
作者
Alfaro, Rodrigo [1 ]
Allende, Hector [1 ]
机构
[1] Univ Tecn Federico Santa Maria, Valparaiso, Chile
关键词
Multi-label text classification; text modelling; problem transformation;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Automatic text classification is the task of assigning unseen documents to a predefined set of classes. Text representation for classification purposes has been traditionally approached using a vector space model due to its simplicity and good performance. On the other hand, multi-label automatic text classification has been typically addressed either by transforming the problem under study to apply binary techniques or by adapting binary algorithms to work with multiple labels. In this paper we present two new representations for text documents based on label-dependent term-weighting for multi-label classification. We focus on modifying the input. Performance was tested with a well-known dataset and compared to alternative techniques. Experimental results based on Hamming loss analysis show an improvement against alternative approaches.
引用
收藏
页码:61 / 70
页数:10
相关论文
共 50 条
  • [1] A NEW INPUT REPRESENTATION FOR MULTI-LABEL TEXT CLASSIFICATION
    Alfaro, Rodrigo
    Allende, Hector
    [J]. 2011 INTERNATIONAL CONFERENCE ON INSTRUMENTATION, MEASUREMENT, CIRCUITS AND SYSTEMS (ICIMCS 2011), VOL 3: COMPUTER-AIDED DESIGN, MANUFACTURING AND MANAGEMENT, 2011, : 207 - 210
  • [2] LABEL-AWARE TEXT REPRESENTATION FOR MULTI-LABEL TEXT CLASSIFICATION
    Guo, Hao
    Li, Xiangyang
    Zhang, Lei
    Liu, Jia
    Chen, Wei
    [J]. 2021 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP 2021), 2021, : 7728 - 7732
  • [3] MULTI-LABEL TEXT CLASSIFICATION WITH A ROBUST LABEL DEPENDENT REPRESENTATION
    Alfaro, Rodrigo
    Allende, Hector
    [J]. 2011 INTERNATIONAL CONFERENCE ON INSTRUMENTATION, MEASUREMENT, CIRCUITS AND SYSTEMS (ICIMCS 2011), VOL 3: COMPUTER-AIDED DESIGN, MANUFACTURING AND MANAGEMENT, 2011, : 211 - 214
  • [4] Label-Specific Document Representation for Multi-Label Text Classification
    Xiao, Lin
    Huang, Xin
    Chen, Boli
    Jing, Liping
    [J]. 2019 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING AND THE 9TH INTERNATIONAL JOINT CONFERENCE ON NATURAL LANGUAGE PROCESSING (EMNLP-IJCNLP 2019): PROCEEDINGS OF THE CONFERENCE, 2019, : 466 - 475
  • [5] Correlation-Guided Representation for Multi-Label Text Classification
    Zhang, Qian-Wen
    Zhang, Ximing
    Yan, Zhao
    Liu, Ruifang
    Cao, Yunbo
    Zhang, Min-Ling
    [J]. PROCEEDINGS OF THE THIRTIETH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, IJCAI 2021, 2021, : 3363 - 3369
  • [6] Label prompt for multi-label text classification
    Song, Rui
    Liu, Zelong
    Chen, Xingbing
    An, Haining
    Zhang, Zhiqi
    Wang, Xiaoguang
    Xu, Hao
    [J]. APPLIED INTELLIGENCE, 2023, 53 (08) : 8761 - 8775
  • [7] Label prompt for multi-label text classification
    Rui Song
    Zelong Liu
    Xingbing Chen
    Haining An
    Zhiqi Zhang
    Xiaoguang Wang
    Hao Xu
    [J]. Applied Intelligence, 2023, 53 : 8761 - 8775
  • [8] Multi-label Text Classification with Multi-variate Bernoulli Model and Label Dependent Representation
    Alfaro A, Rodrigo
    Allende O, Hector
    [J]. REVISTA SIGNOS, 2020, 53 (104): : 549 - 567
  • [9] Multi-Label Classification With Hyperdimensional Representations
    Chandrasekaran, Rishikanth
    Asgareinjad, Fatemeh
    Morris, Justin
    Rosing, Tajana
    [J]. IEEE ACCESS, 2023, 11 : 108458 - 108474
  • [10] Hybrid embedding-based text representation for hierarchical multi-label text classification
    Ma, Yinglong
    Liu, Xiaofeng
    Zhao, Lijiao
    Liang, Yue
    Zhang, Peng
    Jin, Beihong
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2022, 187