Toeplitz Localization Operators: Spectral Functions Density

被引:7
|
作者
Hutnik, Ondrej [1 ]
Maximenko, Egor A. [2 ]
Miskova, Anna [1 ]
机构
[1] Pavol Jozef Safarik Univ Kosice, Fac Sci, Inst Math, Jesenna 5, Kosice 04001, Slovakia
[2] Inst Politecn Nacl, Escuela Super Fis & Matemat, Mexico City 07730, DF, Mexico
关键词
Toeplitz operator; Localization operator; Time-frequency analysis; Wavelet transform; Wiener's deconvolution; Meixner-Pollaczek polynomials; Operator algebra; Approximate invertibility; WEIGHTED BERGMAN SPACES; TIME-FREQUENCY LOCALIZATION; UPPER HALF-PLANE; VERTICAL SYMBOLS; ALGEBRAS;
D O I
10.1007/s11785-016-0564-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider two classes of localization operators based on the Caldern and Gabor reproducing formulas and represent them in a uniform way as Toeplitz operators. We restrict our attention to the generating symbols depending on the first coordinate in the phase space. In this case, the Toeplitz localization operators (TLOs) exhibit an explicit diagonalization, i.e., there exists an isometric isomorphism that transforms all TLOs to the multiplication operators by some specific functions-we call them spectral functions. We show that these spectral functions can be written in the form of a convolution of the generating symbol of TLO with a kernel function incorporating an admissible wavelet/window. Using the Wiener's deconvolution technique on the real line, we prove that the set of spectral functions is dense in the C-algebra of bounded uniformly continuous functions on the real line under the assumption that the Fourier transform of the kernel function does not vanish on the real line. This provides an explicit and independent description of the C-algebra generated by the set of spectral functions. The result is then applied to the case of a parametric family of wavelets related to Laguerre functions. Thereby we also provide an explicit description of the C-algebra generated by vertical Toeplitz operators on true poly-analytic Bergman spaces over the upper half-plane.
引用
收藏
页码:1757 / 1774
页数:18
相关论文
共 50 条
  • [1] Toeplitz Localization Operators: Spectral Functions Density
    Ondrej Hutník
    Egor A. Maximenko
    Anna Mišková
    Complex Analysis and Operator Theory, 2016, 10 : 1757 - 1774
  • [2] Submultiplicative functions and spectral theory of Toeplitz operators
    Bottcher, A
    Karlovich, YI
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 1996, 4 (1-2) : 181 - 202
  • [3] ON TOEPLITZ OPERATORS AND LOCALIZATION OPERATORS
    Abreu, Luis Daniel
    Faustino, Nelson
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2015, 143 (10) : 4317 - 4323
  • [4] TOEPLITZ OPERATORS AND LOCALIZATION OPERATORS
    Englis, Miroslav
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2009, 361 (02) : 1039 - 1052
  • [5] On Toeplitz localization operators
    Hutnik, Ondrej
    Hutnikova, Maria
    ARCHIV DER MATHEMATIK, 2011, 97 (04) : 333 - 344
  • [6] On Toeplitz localization operators
    Ondrej Hutník
    Mária Hutníková
    Archiv der Mathematik, 2011, 97 : 333 - 344
  • [7] LOCALIZATION OF TOEPLITZ-OPERATORS
    DOUGLAS, RG
    LECTURE NOTES IN MATHEMATICS, 1984, 1043 : 271 - 273
  • [8] Spectral triples and Toeplitz operators
    Englis, Miroslav
    Falk, Kevin
    Iochum, Bruno
    JOURNAL OF NONCOMMUTATIVE GEOMETRY, 2015, 9 (04) : 1041 - 1076
  • [9] Localization of Toeplitz Operators on Bergman Spaces
    卢玉峰
    Communications in Mathematical Research, 2001, (04) : 461 - 468
  • [10] THE SPECTRAL THEORY OF TOEPLITZ-OPERATORS
    DEMONVEL, LB
    GUILLEMIN, V
    ANNALS OF MATHEMATICS STUDIES, 1981, (99): : 3 - 160