Particle Swarm Optimization Based Approach for Finding Optimal Values of Convolutional Neural Network Parameters

被引:20
|
作者
Sinha, Toshi [1 ]
Haidar, Ali [1 ]
Verma, Brijesh [1 ]
机构
[1] Cent Queensland Univ, Sch Engn & Technol, Ctr Intelligent Syst, Rockhampton, Qld, Australia
关键词
Convolutional Neural Networks; Optimization; Particle Swarm Optimization; Image Classification; CODED GENETIC ALGORITHM;
D O I
10.1109/CEC.2018.8477728
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Convolutional Neural Networks (CNNs) have demonstrated great potential in complex image classification problems in past few years. CNNs have a large number of parameters and the system accuracy depends directly on the selection of these parameters. With diverse parameters, selection of optimal parameter remains a trial and error, ad hoc or expert's mercy. In practice, optimal parameter selection remains the biggest obstacle in designing a real-world application using CNN. Convolutional neural network's performance is highly affected by its parameters. A novel approach is proposed in this paper to select convolutional neural network parameters in an image classification task. The proposed approach incorporated particle swarm optimization to select the parameters of the convolutional network. Two datasets, one benchmark CIFAR-10 and one real world application dataset, road-side vegetation dataset, were selected to evaluate the proposed approach. It is demonstrated that proposed approach efficiently explores the solution space, and determines the best combination of parameters. Extensive experiments, along with the statistical tests, revealed that proposed approach is an effective technique for automatically optimizing CNN's parameters.
引用
收藏
页码:1500 / 1505
页数:6
相关论文
共 50 条
  • [1] A novel IoT network intrusion detection approach based on Adaptive Particle Swarm Optimization Convolutional Neural Network
    Kan, Xiu
    Fan, Yixuan
    Fang, Zhijun
    Cao, Le
    Xiong, Neal N.
    Yang, Dan
    Li, Xuan
    INFORMATION SCIENCES, 2021, 568 : 147 - 162
  • [2] Quantum Particle Swarm Optimization Based Convolutional Neural Network for Handwritten Script Recognition
    Sharma, Reya
    Kaushik, Baijnath
    Gondhi, Naveen Kumar
    Tahir, Muhammad
    Rahmani, Mohammad Khalid Imam
    CMC-COMPUTERS MATERIALS & CONTINUA, 2022, 71 (03): : 5855 - 5873
  • [3] Bearing fault diagnosis based on particle swarm optimization fusion convolutional neural network
    Liu, Xian
    Wu, Ruiqi
    Wang, Rugang
    Zhou, Feng
    Chen, Zhaofeng
    Guo, Naihong
    FRONTIERS IN NEUROROBOTICS, 2022, 16
  • [4] Determination of ion exchange parameters by a neural network based on particle swarm optimization
    Yuan, Jing
    Luo, Fengguang
    Gao, Liang
    Zhou, Chi
    OPTICAL ENGINEERING, 2008, 47 (02)
  • [5] Optimization of convolutional neural network for glass-forming ability prediction based on particle swarm optimization
    Wang, Meng-qi
    Liang, Yong-chao
    Sun, Bo
    Pu, Yuan-wei
    Xie, Ji-xing
    MATERIALS TODAY COMMUNICATIONS, 2023, 36
  • [6] Cutting Parameters Optimization Based on Radial Basis Function Neural Network and Particle Swarm Optimization
    Li Baodong
    ADVANCED MATERIALS AND STRUCTURES, PTS 1 AND 2, 2011, 335-336 : 1473 - 1476
  • [7] Particle Swarm Optimization-Based Convolutional Neural Network for Handwritten Chinese Character Recognition
    Dan, Yongping
    Li, Zhuo
    JOURNAL OF ADVANCED COMPUTATIONAL INTELLIGENCE AND INTELLIGENT INFORMATICS, 2023, 27 (02) : 165 - 172
  • [8] Power System Operation State Identification Based on Particle Swarm Optimization and Convolutional Neural Network
    Yang J.
    Zhao J.
    Meng R.
    Zhang D.
    Li B.
    Wu Y.
    Dianwang Jishu/Power System Technology, 2024, 48 (01): : 315 - 324
  • [9] Artificial Neural Network Based Particle Swarm Optimization for Microgrid Optimal Energy Scheduling
    Abdolrasol, Maher G. M.
    Mohamed, Ramizi
    Hannan, M. A.
    Al-Shetwi, Ali Q.
    Mansor, M.
    Blaabjerg, Frede
    IEEE TRANSACTIONS ON POWER ELECTRONICS, 2021, 36 (11) : 12151 - 12157
  • [10] RBF Neural Network Based on Particle Swarm Optimization
    Shao, Yuxiang
    Chen, Qing
    Jiang, Hong
    ADVANCES IN NEURAL NETWORKS - ISNN 2010, PT 1, PROCEEDINGS, 2010, 6063 : 169 - +