THE FINITENESS PROBLEM FOR MONOIDS OF MORPHISMS

被引:1
|
作者
Honkala, Juha [1 ]
机构
[1] Univ Turku, Dept Math & Stat, Turku 20014, Finland
来源
关键词
Free monoid morphism; finiteness problem; decidability;
D O I
10.1051/ita/2014028
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We study finitely generated monoids consisting of endomorphisms of a free monoid. We give a necessary and sufficient condition for such a monoid to be infinite and show that this condition is decidable. As a special case we discuss the morphism torsion problem.
引用
收藏
页码:61 / 65
页数:5
相关论文
共 50 条
  • [1] Eraser morphisms and membership problem in groups and monoids
    D'Angeli, Daniele
    Rodaro, Emanuele
    Silva, Pedro V.
    Zakharov, Alexander
    COMMUNICATIONS IN ALGEBRA, 2020, 48 (08) : 3482 - 3504
  • [2] On morphisms of commutative monoids
    J. I. García García
    M. A. Moreno Frías
    Semigroup Forum, 2012, 84 : 333 - 341
  • [3] ON MORPHISMS OF TRACE MONOIDS
    OCHMANSKI, E
    LECTURE NOTES IN COMPUTER SCIENCE, 1987, 294 : 346 - 355
  • [4] On morphisms of commutative monoids
    Garcia Garcia, J. I.
    Moreno Frias, M. A.
    SEMIGROUP FORUM, 2012, 84 (02) : 333 - 341
  • [5] ON THE PERIODICITY OF MORPHISMS ON FREE MONOIDS
    HARJU, T
    LINNA, M
    RAIRO-INFORMATIQUE THEORIQUE ET APPLICATIONS-THEORETICAL INFORMATICS AND APPLICATIONS, 1986, 20 (01): : 47 - 54
  • [6] The finiteness of finitely presented monoids
    McNaughton, R
    THEORETICAL COMPUTER SCIENCE, 1998, 204 (1-2) : 169 - 182
  • [7] UNAMBIGUOUS ERASING MORPHISMS IN FREE MONOIDS
    Schneider, Johannes C.
    RAIRO-THEORETICAL INFORMATICS AND APPLICATIONS, 2010, 44 (02): : 193 - 208
  • [8] Unambiguous Erasing Morphisms in Free Monoids
    Schneider, Johannes C.
    SOFSEM 2009-THEORY AND PRACTICE OF COMPUTER SCIENCE, PROCEEDINGS, 2009, 5404 : 473 - 484
  • [9] Morphisms and duality of monoids of Lie type
    Putcha, MS
    Renner, LE
    JOURNAL OF ALGEBRA, 1996, 184 (03) : 1025 - 1040
  • [10] ON THE K-FREENESS OF MORPHISMS ON FREE MONOIDS
    KERANEN, V
    LECTURE NOTES IN COMPUTER SCIENCE, 1987, 247 : 180 - 188