Methodology for long-term prediction of time series

被引:281
|
作者
Sorjamaa, Antti [1 ]
Hao, Jin [1 ]
Reyhani, Nima [1 ]
Ji, Yongnan [1 ]
Lendasse, Amaury [1 ]
机构
[1] Aalto Univ, Adapt Informat Res Ctr, FIN-02015 Espoo, Finland
关键词
time series prediction; input selection; k-Nearest neighbors; mutual information; nonparametric noise estimation; recursive prediction; direct prediction; least squares support vector machines;
D O I
10.1016/j.neucom.2006.06.015
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, a global methodology for the long-term prediction of time series is proposed. This methodology combines direct prediction strategy and sophisticated input selection criteria: k-nearest neighbors approximation method (k-NN), mutual information (MI) and nonparametric noise estimation (NNE). A global input selection strategy that combines forward selection, backward elimination (or pruning) and forward-backward selection is introduced. This methodology is used to optimize the three input selection criteria (k-NN, MI and NNE). The methodology is successfully applied to a real life benchmark: the Poland Electricity Load dataset. (c) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:2861 / 2869
页数:9
相关论文
共 50 条
  • [1] Long-Term Prediction Intervals of Time Series
    Zhou, Zhou
    Xu, Zhiwei
    Wu, Wei Biao
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2010, 56 (03) : 1436 - 1446
  • [2] Input selection for long-term prediction of time series
    Tikka, J
    Hollmén, J
    Lendasse, A
    [J]. COMPUTATIONAL INTELLIGENCE AND BIOINSPIRED SYSTEMS, PROCEEDINGS, 2005, 3512 : 1002 - 1009
  • [3] Long-term prediction intervals of economic time series
    M. Chudý
    S. Karmakar
    W. B. Wu
    [J]. Empirical Economics, 2020, 58 : 191 - 222
  • [4] Long-term prediction intervals of economic time series
    Chudy, M.
    Karmakar, S.
    Wu, W. B.
    [J]. EMPIRICAL ECONOMICS, 2020, 58 (01) : 191 - 222
  • [5] Long-term prediction of time series based on fuzzy time series and information granulation
    Liu, Yunzhen
    Wang, Lidong
    [J]. GRANULAR COMPUTING, 2024, 9 (02)
  • [6] A Review of Machine Learning Methods for Long-Term Time Series Prediction
    Ptotic, Milan P.
    Stojanovic, Milos B.
    Popovic, Predrag M.
    [J]. 2022 57TH INTERNATIONAL SCIENTIFIC CONFERENCE ON INFORMATION, COMMUNICATION AND ENERGY SYSTEMS AND TECHNOLOGIES (ICEST), 2022, : 205 - 208
  • [7] Long-term prediction of time series using fuzzy cognitive maps
    Feng, Guoliang
    Zhang, Liyong
    Yang, Jianhua
    Lu, Wei
    [J]. ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2021, 102
  • [8] VAECGAN: a generating framework for long-term prediction in multivariate time series
    Xiang Yin
    Yanni Han
    Zhen Xu
    Jie Liu
    [J]. Cybersecurity, 4
  • [9] Long-term time series prediction with the NARX network: An empirical evaluation
    Menezes, Jose Maria P., Jr.
    Barreto, Guilherme A.
    [J]. NEUROCOMPUTING, 2008, 71 (16-18) : 3335 - 3343
  • [10] Long-Term Prediction of Time Series by combining Direct and MIMO Strategies
    Ben Taieb, Souhaib
    Bontempi, Gianluca
    Sorjamaa, Antti
    Lendasse, Amaury
    [J]. IJCNN: 2009 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1- 6, 2009, : 1559 - +