Semi-supervised Classification by Local Coordination

被引:0
|
作者
Yang, Gelan [1 ]
Xu, Xue [2 ]
Yang, Gang [3 ]
Zhang, Jianming [4 ]
机构
[1] Hunan City Univ, Dept Comp Sci, Yiyang, Peoples R China
[2] Univ Sci & Technol China, Dept Automat, Hefei, Peoples R China
[3] Ecole Super Elect, Dept Power & Energy Syst, Gif Sur Yvette, France
[4] Changsha Univ Sci & Technol, Coll Comp & Commun Engn, Changsha, Peoples R China
关键词
mixture of factor analyzers; local linear coordinate; semi-supervised classification; manifold learning;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Graph-based methods for semi-supervised learning use graph to smooth the labels of the points. However, most of them are transductive thus can't give predictions for the unlabeled data outside the training set directly. In this paper, we propose an inductive graph-based algorithm that produces a classifier defined on the whole ambient space. A smooth nonlinear projection between the sample space and the label value space is achieved by local dimension reduction and coordination. The effectiveness of the proposed algorithm is demonstrated by the experiment.
引用
收藏
页码:517 / +
页数:3
相关论文
共 50 条
  • [1] Semi-Supervised Classification via Local Spline Regression
    Xiang, Shiming
    Nie, Feiping
    Zhang, Changshui
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2010, 32 (11) : 2039 - 2053
  • [2] Semi-supervised Hierarchical Classification Based on Local Information
    Serrano-Perez, Jonathan
    Sucar, L. Enrique
    [J]. ADVANCES IN ARTIFICIAL INTELLIGENCE-IBERAMIA 2022, 2022, 13788 : 255 - 266
  • [3] Semi-supervised local feature selection for data classification
    Zechao Li
    Jinhui Tang
    [J]. Science China Information Sciences, 2021, 64
  • [4] Semi-supervised local feature selection for data classification
    Li, Zechao
    Tang, Jinhui
    [J]. SCIENCE CHINA-INFORMATION SCIENCES, 2021, 64 (09)
  • [5] Semi-supervised local feature selection for data classification
    Zechao LI
    Jinhui TANG
    [J]. Science China(Information Sciences), 2021, 64 (09) : 127 - 138
  • [6] Adaptive Semi-Supervised Classification by Joint Global and Local Graph
    Deng, Siyang
    Wang, Qianqian
    Gao, Quanxue
    [J]. IEEE ACCESS, 2019, 7 : 87212 - 87222
  • [7] Semi-Supervised Image Classification Based on Local and Global Regression
    Zhao, Mingbo
    Zhan, Choujun
    Wu, Zhou
    Tang, Peng
    [J]. IEEE SIGNAL PROCESSING LETTERS, 2015, 22 (10) : 1666 - 1670
  • [8] Semi-supervised classification trees
    Levatic, Jurica
    Ceci, Michelangelo
    Kocev, Dragi
    Dzeroski, Saso
    [J]. JOURNAL OF INTELLIGENT INFORMATION SYSTEMS, 2017, 49 (03) : 461 - 486
  • [9] Watersheds for Semi-Supervised Classification
    Challa, Aditya
    Danda, Sravan
    Sagar, B. S. Daya
    Najman, Laurent
    [J]. IEEE SIGNAL PROCESSING LETTERS, 2019, 26 (05) : 720 - 724
  • [10] LOCAL NEAREST NEIGHBOUR CLASSIFICATION WITH APPLICATIONS TO SEMI-SUPERVISED LEARNING
    Cannings, Timothy I.
    Berrett, Thomas B.
    Samworth, Richard J.
    [J]. ANNALS OF STATISTICS, 2020, 48 (03): : 1789 - 1814