Wavelet regression for random or irregular design

被引:45
|
作者
Antoniadis, A [1 ]
Pham, DT [1 ]
机构
[1] INRIA, CNRS, IMAG, Lab Modelling & Computat, F-38041 Grenoble 09, France
关键词
D O I
10.1016/S0167-9473(98)90145-1
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper, wavelet regression estimators are introduced, both in the random and the irregular design cases and without the restriction that the sample size is a power of two. A fast computational algorithm for approximating the empirical counterpart of the scaling and wavelet coefficients, is developed. The convergence rate of the estimator is established. The method is illustrated by some simulations and by a real example. (C) 1998 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:353 / 369
页数:17
相关论文
共 50 条
  • [1] Wavelet Threshold Estimator of Regression Function with Random Design
    董金田
    张双林
    [J]. 数学进展, 1999, (05) : 471 - 472
  • [2] Wavelet threshold estimation of a regression function with random design
    Zhang, SL
    Wong, MY
    Zheng, ZG
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2002, 80 (02) : 256 - 284
  • [3] WAVELET REGRESSION IN RANDOM DESIGN WITH HETEROSCEDASTIC DEPENDENT ERRORS
    Kulik, Rafal
    Raimondo, Marc
    [J]. ANNALS OF STATISTICS, 2009, 37 (6A): : 3396 - 3430
  • [4] Nonparametric regression on random fields with random design using wavelet method
    Li L.
    [J]. Statistical Inference for Stochastic Processes, 2016, 19 (1) : 51 - 69
  • [5] Wavelet Thresholding in Fixed Design Regression for Gaussian Random Fields
    Linyuan Li
    Kewei Lu
    Yimin Xiao
    [J]. Journal of Fourier Analysis and Applications, 2019, 25 : 3184 - 3213
  • [6] Wavelet shrinkage for regression models with random design and correlated errors
    Porto, Rogerio
    Morettin, Pedro
    Percival, Donald
    Aubin, Elisete
    [J]. BRAZILIAN JOURNAL OF PROBABILITY AND STATISTICS, 2016, 30 (04) : 614 - 652
  • [7] Wavelet Thresholding in Fixed Design Regression for Gaussian Random Fields
    Li, Linyuan
    Lu, Kewei
    Xiao, Yimin
    [J]. JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2019, 25 (06) : 3184 - 3213
  • [8] Polynomial wavelet regression for images with irregular boundaries
    Naveau, P
    Oh, HS
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2004, 13 (06) : 773 - 781
  • [9] Wavelet estimation of a regression function with a sharp change point in a random design
    Park, C
    Kim, WC
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2006, 136 (07) : 2381 - 2394
  • [10] Penalized wavelet nonparametric univariate logistic regression for irregular spaced data
    Amato, Umberto
    Antoniadis, Anestis
    De Feis, Italia
    Gijbels, Irene
    [J]. STATISTICS, 2023,