VIPTRA: Visualization and Interactive Processing on Big Trajectory Data

被引:2
|
作者
Ding, Xin [1 ]
Chen, Rui [1 ]
Chen, Lu [2 ]
Gao, Yunjun [1 ]
Jensen, Christian S. [2 ]
机构
[1] Zhejiang Univ, Coll Comp Sci, Hangzhou, Peoples R China
[2] Aalborg Univ, Dept Comp Sci, Aalborg, Denmark
关键词
Trajectory data; visualization;
D O I
10.1109/MDM.2018.00055
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Massive trajectory data is being collected and used widely in many applications such as transportation, location-based services, and urban computing. As a result, abundant methods and systems have been proposed for managing and processing trajectory data. However, it remains difficult for users to interact well with data management and processing, due to the lack of efficient data processing methods and effective visualization techniques for big trajectory data. In this demonstration, we present a new framework, VIPTRA, to process big trajectory data visually and interactively. VIPTRA builds upon UlTraMan, a distributed in-memory system for big trajectory data, and thus, it takes advantage of its capability of high performance. The demonstration shows the efficiency of data processing and user-friendly visualization and interaction techniques provided in VIPTRA, via several scenarios of visual analysis and trajectory editing tasks.
引用
收藏
页码:290 / 291
页数:2
相关论文
共 50 条
  • [1] Interactive Visualization of Big Data
    Godfrey, Parke
    Gryz, Jarek
    Lasek, Piotr
    Razavi, Nasim
    [J]. BEYOND DATABASES, ARCHITECTURES AND STRUCTURES, BDAS 2016, 2016, 613 : 3 - 22
  • [2] Interactive big data visualization and analytics
    Auber, David
    Bikakis, Nikos
    Chrysanthis, Panos K.
    Papastefanatosd, George
    Sharaf, Mohamed
    [J]. BIG DATA RESEARCH, 2024, 36
  • [3] Interactive Visualization for Big Spatial Data
    Ghosh, Saheli
    [J]. SIGMOD '19: PROCEEDINGS OF THE 2019 INTERNATIONAL CONFERENCE ON MANAGEMENT OF DATA, 2019, : 1826 - 1828
  • [4] Vaite: a Visualization-Assisted Interactive Big Urban Trajectory Data Exploration System
    Yang, Chuang
    Zhang, Yilan
    Tang, Bo
    Zhu, Min
    [J]. 2019 IEEE 35TH INTERNATIONAL CONFERENCE ON DATA ENGINEERING (ICDE 2019), 2019, : 2036 - 2039
  • [5] Interactive Visualization and Big Data A Management Perspective
    Plank, Thomas
    Helfert, Markus
    [J]. PROCEEDINGS OF THE 12TH INTERNATIONAL CONFERENCE ON WEB INFORMATION SYSTEMS AND TECHNOLOGIES, VOL 2 (WEBIST), 2016, : 42 - 47
  • [6] A BIG DATA PROCESSING METHODS FOR VISUALIZATION
    Fu, Qunchao
    Liu, Wanheng
    Xue, Tengfei
    Gu, Heng
    Zhang, Siyue
    Wang, Cong
    [J]. 2014 IEEE 3RD INTERNATIONAL CONFERENCE ON CLOUD COMPUTING AND INTELLIGENCE SYSTEMS (CCIS), 2014, : 571 - 575
  • [7] Interactive Visualization of Traffic Dynamics Based on Trajectory Data
    Gomes, George A. M.
    Santos, Emanuele
    Vidal, Creto A.
    [J]. 2017 30TH SIBGRAPI CONFERENCE ON GRAPHICS, PATTERNS AND IMAGES (SIBGRAPI), 2017, : 111 - 118
  • [8] Interactive Visualization of Multivariate Trajectory Data with Density Maps
    Scheepens, Roeland
    Willems, Niels
    van de Wetering, Huub
    van Wijk, Jarke J.
    [J]. IEEE PACIFIC VISUALIZATION SYMPOSIUM 2011, 2011, : 147 - 154
  • [9] A Vector Field Visualization Method for Trajectory Big Data
    Li, Aidi
    Xu, Zhijie
    Zhang, Jianqin
    Li, Taizeng
    Cheng, Xinyue
    Hu, Chaonan
    [J]. ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2023, 12 (10)
  • [10] Bandlimited OLAP Cubes for Interactive Big Data Visualization
    Reach, Caleb
    North, Chris
    [J]. 2015 IEEE 5TH SYMPOSIUM ON LARGE DATA ANALYSIS AND VISUALIZATION (LDAV), 2015, : 107 - 114