CLASSIFICATION OF SCHIZOPHRENIA AND BIPOLAR PATIENTS USING STATIC AND TIME-VARYING RESTING-STATE FMRI BRAIN CONNECTIVITY

被引:0
|
作者
Rashid, Barnaly [1 ,2 ,3 ]
Arbabshirani, Mohammad Reza [1 ,2 ]
Damaraju, Eswar [1 ,2 ,3 ]
Millar, Robyn [3 ]
Cetin, Mustafa S. [1 ,2 ,7 ]
Pearlson, Godfrey D. [4 ,5 ,6 ]
Calhoun, Vince D. [1 ,2 ,3 ,5 ]
机构
[1] Mind Res Network, Albuquerque, NM 87131 USA
[2] LBERI, Albuquerque, NM USA
[3] Univ New Mexico, Dept Elect & Comp Engn, Albuquerque, NM 87131 USA
[4] Inst Living, Olin Neuropsychiat Res Ctr, Hartford, CT USA
[5] Yale Univ, Sch Med, Dept Psychiat, New Haven, CT USA
[6] Yale Univ, Sch Med, Dept Neurobiol, New Haven, CT USA
[7] Univ New Mexico, Dept Comp Sci, Albuquerque, NM 87131 USA
来源
2015 IEEE 12TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI) | 2015年
关键词
fMRI; dynamic functional network connectivity; classification; schizophrenia; bipolar; FUNCTIONAL NETWORK CONNECTIVITY; TASK;
D O I
暂无
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Recently, there is a growing interest in designing objective prognostic/diagnostic tools based on neuroimaging and other data that display high accuracy and robustness. Small training subjects and very large amount of high dimensional data make it a challenging task to design robust and accurate classifiers for heterogeneous disorders such as schizophrenia. Majority of previous works have focused on classification of schizophrenia from healthy controls while automatic differential diagnosis of schizophrenia from bipolar disorder has been rarely investigated. In this work, we propose a framework for automatic classification of schizophrenia, bipolar and healthy control subjects based on static and dynamic functional network connectivity (FNC) features. Our results show that disrupted functional integration in schizophrenia and bipolar patients as captured by FNC analysis reveal powerful information for automatic discriminative analysis.
引用
收藏
页码:251 / 254
页数:4
相关论文
共 50 条
  • [1] Classification of schizophrenia and bipolar patients using static and dynamic resting-state fMRI brain connectivity
    Rashid, Barnaly
    Arbabshirani, Mohammad R.
    Damaraju, Eswar
    Cetin, Mustafa S.
    Miller, Robyn
    Pearlson, Godfrey D.
    Calhoun, Vince D.
    NEUROIMAGE, 2016, 134 : 645 - 657
  • [2] CLASSIFICATION OF SCHIZOPHRENIA AND BIPOLAR PATIENTS USING STATIC AND DYNAMIC RESTING FMRI CONNECTIVITY
    Rashid, Barnaly
    Arbabshirani, Mohammad Reza
    Damaraju, Eswar
    Miller, Robyn
    Pearlson, Godfrey
    Calhoun, Vince
    SCHIZOPHRENIA BULLETIN, 2015, 41 : S237 - S237
  • [3] Resting-State fMRI Connectivity Impairment in Schizophrenia and Bipolar Disorder
    Argyelan, Miklos
    Ikuta, Toshikazu
    DeRosse, Pamela
    Braga, Raphael J.
    Burdick, Katherine E.
    John, Majnu
    Kingsley, Peter B.
    Malhotra, Anil K.
    Szeszko, Philip R.
    SCHIZOPHRENIA BULLETIN, 2014, 40 (01) : 100 - 110
  • [4] Cognitive remediation and brain connectivity: A resting-state fMRI study in patients with schizophrenia
    Penades, Rafael
    Segura, Barbara
    Inguanzo, Anna
    Garcia-Rizo, Clemente
    Catalan, Rosa
    Masana, Guillem
    Bernardo, Miquel
    Junque, Carme
    PSYCHIATRY RESEARCH-NEUROIMAGING, 2020, 303
  • [5] The Neural Basis of Time-Varying Resting-State Functional Connectivity
    Keilholz, Shella Dawn
    BRAIN CONNECTIVITY, 2014, 4 (10) : 769 - 779
  • [6] A Sticky Weighted Regression Model for Time-Varying Resting-State Brain Connectivity Estimation
    Liu, Aiping
    Chen, Xun
    McKeown, Martin J.
    Wang, Z. Jane
    IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2015, 62 (02) : 501 - 510
  • [7] Classification of schizophrenia-associated brain regions in resting-state fMRI
    Ahmad, Fayyaz
    Ahmad, Iftikhar
    Guerrero-Sanchez, Yolanda
    EUROPEAN PHYSICAL JOURNAL PLUS, 2023, 138 (01):
  • [8] Classification of schizophrenia-associated brain regions in resting-state fMRI
    Fayyaz Ahmad
    Iftikhar Ahmad
    Yolanda Guerrero-Sánchez
    The European Physical Journal Plus, 138
  • [9] fMRI evidence for abnormal resting-state functional connectivity in euthymic bipolar patients
    Favre, Pauline
    Baciu, Monica
    Pichat, Cedric
    Bougerol, Thierry
    Polosan, Mircea
    JOURNAL OF AFFECTIVE DISORDERS, 2014, 165 : 182 - 189
  • [10] Classification of schizophrenia patients on lattice computing resting-state fMRI features
    Chyzhyk, Darya
    Grana, Manuel
    NEUROCOMPUTING, 2015, 151 : 151 - 160