Sequential Human Activity Recognition Based on Deep Convolutional Network and Extreme Learning Machine Using Wearable Sensors

被引:59
|
作者
Sun, Jian [1 ,2 ]
Fu, Yongling [1 ]
Li, Shengguang [2 ]
He, Jie [3 ]
Xu, Cheng [3 ]
Tan, Lin [2 ]
机构
[1] Beihang Univ, Sch Mech Engn er Automat, Beijing 100191, Peoples R China
[2] FRI Minist Publ Secur, Beijing 100048, Peoples R China
[3] Univ Sci & Technol Beijing, Sch Comp & Commun Engn, Beijing 100083, Peoples R China
关键词
SYSTEM;
D O I
10.1155/2018/8580959
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Human activity recognition (HAR) problems have traditionally been solved by using engineered features obtained by heuristic methods. These methods ignore the time information of the streaming sensor data and cannot achieve sequential human activity recognition. With the use of traditional statistical learning methods, results could easily plunge into the local minimum other than the global optimal and also face the problem of low efficiency. Therefore, we propose a hybrid deep framework based on convolution operations, LSTM recurrent units, and ELM classifier; the advantages are as follows: (1) does not require expert knowledge in extracting features; (2) models temporal dynamics of features; and (3) is more suitable to classify the extracted features and shortens the runtime. All of these unique advantages make it superior to other HAR algorithms. We evaluate our framework on OPPORTUNITY dataset which has been used in OPPORTUNITY challenge. Results show that our proposed method outperforms deep nonrecurrent networks by 6%, outperforming the previous reported best result by 8%. When compared with neural network using BP algorithm, testing time reduced by 38%.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Human Activity Recognition Using Deep Residual Convolutional Network Based on Wearable Sensors
    Yu, Xugao
    Al-qaness, Mohammed A. A.
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2025, 29 (03) : 1950 - 1958
  • [2] Extreme Learning Machine-Based Deep Model for Human Activity Recognition With Wearable Sensors
    Niu, Xiaopeng
    Wang, Zhiliang
    Pan, Zhigeng
    COMPUTING IN SCIENCE & ENGINEERING, 2019, 21 (05) : 16 - 25
  • [3] Deep-Learning-Based Human Activity Recognition Using Wearable Sensors
    Nouriani, A.
    McGovern, R. A.
    Rajamani, R.
    IFAC PAPERSONLINE, 2022, 55 (37): : 1 - 6
  • [4] Human Activity Recognition using Wearable Sensors by Deep Convolutional Neural Networks
    Jiang, Wenchao
    Yin, Zhaozheng
    MM'15: PROCEEDINGS OF THE 2015 ACM MULTIMEDIA CONFERENCE, 2015, : 1307 - 1310
  • [5] An Improved Deep Convolutional LSTM for Human Activity Recognition Using Wearable Sensors
    Zhang, Ningbo
    Song, Yang
    Fang, Dongxu
    Gao, Zhiwei
    Yan, Yajie
    IEEE SENSORS JOURNAL, 2024, 24 (02) : 1717 - 1729
  • [6] Complex Human Activity Recognition Based on Spatial LSTM and Deep Residual Convolutional Network Using Wearable Motion Sensors
    Tian, Ye
    Hettiarachchi, Dulmini
    Yu, Han
    Kamijo, Shunsuke
    IEEE SENSORS JOURNAL, 2024, 24 (14) : 23183 - 23196
  • [7] Wearable Sensors-Based Human Activity Recognition with Deep Convolutional Neural Network and Fuzzy Classification
    Serpush, Fatemeh
    Menhaj, Mohammad Bagher
    Masoumi, Behrooz
    Karasfi, Babak
    WIRELESS PERSONAL COMMUNICATIONS, 2023, 133 (02) : 889 - 911
  • [8] Wearable Sensors-Based Human Activity Recognition with Deep Convolutional Neural Network and Fuzzy Classification
    Fatemeh Serpush
    Mohammad Bagher Menhaj
    Behrooz Masoumi
    Babak Karasfi
    Wireless Personal Communications, 2023, 133 : 889 - 911
  • [9] Deep Human Activity Recognition Using Wearable Sensors
    Lawal, Isah A.
    Bano, Sophia
    12TH ACM INTERNATIONAL CONFERENCE ON PERVASIVE TECHNOLOGIES RELATED TO ASSISTIVE ENVIRONMENTS (PETRA 2019), 2019, : 45 - 48
  • [10] Human Activity Recognition by Using Different Deep Learning Approaches for Wearable Sensors
    Erdas, Cagatay Berke
    Guney, Selda
    NEURAL PROCESSING LETTERS, 2021, 53 (03) : 1795 - 1809