Accelerating Image Classification using Feature Map Similarity in Convolutional Neural Networks

被引:17
|
作者
Park, Keunyoung [1 ]
Kim, Doo-Hyun [1 ]
机构
[1] Konkuk Univ, Dept Software, Seoul 05029, South Korea
来源
APPLIED SCIENCES-BASEL | 2019年 / 9卷 / 01期
关键词
image classification; convolutional neural network; feature map; cosine similarity;
D O I
10.3390/app9010108
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Convolutional neural networks (CNNs) have greatly improved image classification performance. However, the extensive time required for classification owing to the large amount of computation involved, makes it unsuitable for application to low-performance devices. To speed up image classification, we propose a cached CNN, which can classify input images based on similarity with previously input images. Because the feature maps extracted from the CNN kernel represent the intensity of features, images with a similar intensity can be classified into the same class. In this study, we cache class labels and feature vectors extracted from feature maps for images classified by the CNN. Then, when a new image is input, its class label is output based on its similarity with the cached feature vectors. This process can be performed at each layer; hence, if the classification is successful, there is no need to perform the remaining convolution layer operations. This reduces the required classification time. We performed experiments to measure and evaluate the cache hit rate, precision, and classification time.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Hyperspectral Image Classification Using Convolutional Neural Networks and Multiple Feature Learning
    Gao, Qishuo
    Lim, Samsung
    Jia, Xiuping
    REMOTE SENSING, 2018, 10 (02)
  • [2] Image Classification Using Convolutional Neural Networks With Multi-stage Feature
    Yim, Junho
    Ju, Jeongwoo
    Jung, Heechul
    Kim, Junmo
    ROBOT INTELLIGENCE TECHNOLOGY ANDAPPLICATIONS 3, 2015, 345 : 587 - 594
  • [3] Image Classification Using Convolutional Neural Networks
    Filippov, S. A.
    AUTOMATIC DOCUMENTATION AND MATHEMATICAL LINGUISTICS, 2024, 58 (SUPPL3) : S143 - S149
  • [4] Feature Correlation Loss in Convolutional Neural Networks for Image Classification
    Zhou, Jiahuan
    Xiao, Di
    Zhang, Mengyi
    PROCEEDINGS OF 2019 IEEE 3RD INFORMATION TECHNOLOGY, NETWORKING, ELECTRONIC AND AUTOMATION CONTROL CONFERENCE (ITNEC 2019), 2019, : 219 - 223
  • [5] Articulatory Feature Classification Using Convolutional Neural Networks
    Merkx, Danny
    Scharenborg, Odette
    19TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION (INTERSPEECH 2018), VOLS 1-6: SPEECH RESEARCH FOR EMERGING MARKETS IN MULTILINGUAL SOCIETIES, 2018, : 2142 - 2146
  • [6] Local-feature-map Integration Using Convolutional Neural Networks for Music Genre Classification
    Nakashika, Toru
    Garcia, Christophe
    Takiguchi, Tetsuya
    13TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION 2012 (INTERSPEECH 2012), VOLS 1-3, 2012, : 1750 - 1753
  • [7] Hyperspectral Image Classification using Convolutional Neural Networks
    Shambulinga, M.
    Sadashivappa, G.
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2021, 12 (06) : 702 - 708
  • [8] Electroencephalography Image Classification Using Convolutional Neural Networks
    Galety, Mohammad Gouse
    Al-Mukhtar, Firas
    Rofoo, Fanar
    Sriharsha, A., V
    Maaroof, Rebaz
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON INNOVATIONS IN COMPUTING RESEARCH (ICR'22), 2022, 1431 : 42 - 52
  • [9] Fruit Image Classification Using Convolutional Neural Networks
    Ashraf, Shawon
    Kadery, Ivan
    Chowdhury, Md Abdul Ahad
    Mahbub, Tahsin Zahin
    Rahman, Rashedur M.
    INTERNATIONAL JOURNAL OF SOFTWARE INNOVATION, 2019, 7 (04) : 51 - 70
  • [10] Fiber Image Classification Using Convolutional Neural Networks
    Wang, Xinxin
    Chen, Zhao
    Liu, Guohua
    Wan, Yan
    2017 4TH INTERNATIONAL CONFERENCE ON SYSTEMS AND INFORMATICS (ICSAI), 2017, : 1214 - 1218